精英家教网 > 高中数学 > 题目详情
如图所示:在四棱锥中A-BCDE中,AE⊥面EBCD,且四边形EBCD是菱形,∠BED=120°,AE=BE=2,F是BC上的动点(不包括端点),当F时BC的中点时,求点F到面ACD的距离.
考点:点、线、面间的距离计算,二面角的平面角及求法
专题:空间位置关系与距离
分析:以E为原点,ED为y轴,EA为z轴,建立空间直角坐标系,由此能求出点F到面ACD的距离.
解答: 解:以E为原点,ED为y轴,EA为z轴,
建立空间直角坐标系,
由已知得F(
3
,0,0),A(0,0,2),
C(
3
,1,0
),D(0,2,0),
AC
=(
3
,1,-2
),
AD
=(0,2,-2),
设平面ACD的法向量
n
=(x,y,z),
n
AC
=
3
x+y-2z=0
n
AD
=2y-2z=0

取y=1,得
n
=(
3
3
,1,1),
AF
=(
3
,0,-2
),
∴点F到面ACD的距离d=
|
AF
n
|
|
n
|
=
|1-2|
1
3
+2
=
21
7
点评:本题考查点到平面的距离的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求满足下列条件的椭圆的标准方程:
(1)已知椭圆的中心在原点,以坐标轴为对称轴,经过两点P1
6
,0)P2(-
3
,-
2
);
(2)与椭圆
x2
4
+
y2
3
=1有相同的离心率,且经过点(2,
3
).

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,且满足2an-Sn=1,n∈N*
(1)求数列{an}的通项公式;
(2)在数列{an}的第两项之间都按照如下规则插入一些数后,构成新数列{bn};an和an+1两项之间插入n个数,使这n+2个数构成等差数列,求b100的值.
(3)对于(2)中的数列{bn},若bm=a100,求m的值,并求b1+b2+b3+…+bm

查看答案和解析>>

科目:高中数学 来源: 题型:

已知任意向量
a
b
及实数λ,那么“λ
a
+
b
=0”成立是“
a
b
”成立的(  )
A、充分非必要条件
B、必要非充分条件
C、充分必要条件
D、非充分必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

在复数范围内方程x2-2x+4=0的解为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线y2=2px(p>0)的轴和它的准线交于E点,经过焦点F的直线交抛物线于P、Q两点(直线PQ与抛物线的对称轴不垂直),则∠FEP与∠QEF的大小关系为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+lnx,a∈R
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)是否存在实数a,使不等式f(x)<ax2对x∈(1,+∞)恒成立,若存在,求实数a的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
1
1-x
的图象与函数y=2sinπx,(-2≤x≤4)的图象所有交点的横坐标之和等于(  )
A、8B、6C、4D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx+
π
6
)+sin(ωx-
π
6
)-2cos2
ωx
2
(x∈R,ω>0)
(1)求f(x)的值域;
(2)若f(x1)=f(x2)=0,且|x1-x2|的最小值为
π
2
,求f(x)的递增区间.

查看答案和解析>>

同步练习册答案