精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的两个焦点是,并且经过点,抛物线的顶点在坐标原点,焦点恰好是椭圆的右顶点.

求椭圆和抛物线的标准方程;

已知点为抛物线内一个定点,过作斜率分别为的两条直线交抛物线于点,且分别是的中点,若,求证:直线过定点.

【答案】1;(2).

【解析】试题分析(1)根据椭圆的定义,可以求出再根据求出即可写出椭圆方程及抛物线方程;(2)设直线AB方程,联立抛物线方程化简,由根与系数的关系易得M的坐标,同理可得N的坐标,写出MN直线方程,可以看出直线过定点.

试题解析:(1)设椭圆的标准方程为,焦距是,则由题意得:

,∴,椭圆的标准方程为: .

∴右顶点的坐标为,设抛物线的标准方程为: ,∴抛物线的标准方程为: .

(2) ,由

,则,所以,同理

,则,即

其恒过定点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设不等式x2≤5x﹣4的解集为A.
(1)求集合A;
(2)设关于x的不等式x2﹣(a+2)x+2a≤0的解集为M,若MA,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 ,与轴不重合的直线经过左焦点,且与椭圆相交于 两点,弦的中点为,直线与椭圆相交于 两点.

(Ⅰ)若直线的斜率为1,求直线的斜率;

(Ⅱ)是否存在直线,使得成立?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|ax+1|+|2x﹣1|(a∈R).

(1)当a=1时,求不等式f(x)≥2的解集;

(2)若f(x)≤2xx[,1]时恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,甲船以每小时 海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20海里,当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距 海里,问乙船每小时航行多少海里?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下关于命题的说法正确的有(选择所有正确命题的序号).

(1)“若,则函数在其定义域内是减函数”是真命题;

(2)命题“若,则”的否命题是“若,则”;

(3)命题“若都是偶函数,则也是偶数”的逆命题为真命题;

(4)命题“若,则”与命题“若,则”等价.

A. (1)(3) B. (2)(3) C. (2)(4) D. (3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 且cos( )= ,sin 求cos(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足log3an+1=log3an+1(n∈N*),且a2+a4+a6=9,则log (a5+a7+a9)的值是(
A.﹣
B.﹣5
C.5
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A,B,C的坐标分别为A(3,0),B(0,3),C(cos α,sin α),α.

(1)||=||,求角α的值;

(2)=-1,的值.

查看答案和解析>>

同步练习册答案