精英家教网 > 高中数学 > 题目详情
12.函数y=f(x)图象上不同两点M(x1,y1),N(x2,y2)处的切线的斜率分别是kM,kN,规定φ(M,N)=$\frac{{|{{k_M}-{k_N}}|}}{{|{MN}|}}$(|MN|为线段MN的长度)叫做曲线y=f(x)在点M与点N之间的“弯曲度”.①函数f(x)=x3+1图象上两点M与点N的横坐标分别为1和2,φ(M,N)=$\frac{{9\sqrt{2}}}{10}$;
②设曲线f(x)=x3+2上不同两点M(x1,y1),N(x2,y2),且x1•x2=1,则φ(M,N)的取值范围是(0,$\frac{3\sqrt{10}}{5}$).

分析 对于①,由y=x3+1,得y′=3x2,则kM=3,kN=12,则|kM-kN|=9,y1=2,y2=9,则|MN|=$\sqrt{(2-1)^{2}+(9-2)^{2}}$=5$\sqrt{2}$,即可求出φ(M,N)=$\frac{9}{5\sqrt{2}}$=$\frac{{9\sqrt{2}}}{10}$;
对于②,利用定义,再换元,即可得出结论.

解答 解:对于①,由y=x3+1,得y′=3x2
则kM=3,kN=12,则|kM-kN|=9,y1=2,y2=9,则|MN|=$\sqrt{(2-1)^{2}+(9-2)^{2}}$=5$\sqrt{2}$,
φ(M,N)=$\frac{9}{5\sqrt{2}}$=$\frac{{9\sqrt{2}}}{10}$;
②曲线f(x)=x3+2,则f′(x)=3x2
设x1+x2=t(|t|>2),则φ(M,N)=$\frac{|3{{x}_{1}}^{2}-3{{x}_{2}}^{2}|}{\sqrt{({x}_{2}-{x}_{1})^{2}+({{x}_{2}}^{3}-{{x}_{1}}^{3})^{2}}}$=$\frac{3|t|}{\sqrt{1+({t}^{2}-1)^{2}}}$=$\frac{3}{\sqrt{{t}^{2}+\frac{2}{{t}^{2}}-2}}$,
∴0<φ(M,N)<$\frac{3\sqrt{10}}{5}$.
故答案为$\frac{{9\sqrt{2}}}{10}$,(0,$\frac{3\sqrt{10}}{5}$).

点评 本题考查新定义,考查导数知识的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知两个单位向量${\vec e_1},{\vec e_2}$的夹角为$\frac{π}{3}$,则$|{\vec e_1}-2{\vec e_2}|$=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知直线l:mx+y+$\sqrt{3}$=0.与圆(x+1)2+y2=2相交,弦长为2,则m=$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=$\left\{\begin{array}{l}{|lnx-1|,x>0}\\{-{x}^{2}-2x+2,x≤0}\end{array}\right.$,若f(a)=f(b)=f(c)=f(d)且a<b<c<d,给出下列三个结论:
①abcd∈(0,e2];
②a+b+c+d∈(e3+$\frac{1}{e}$-2,e4+$\frac{1}{{e}^{2}}$-2];
③已知关于x的方程f(x)+(-1)kx-t=0恰有三个不同实根,若k为偶数,则t∈[2,$\frac{9}{4}$];若k为奇数,则t=[2,$\frac{17}{4}$];其中正确的结论有(  )个.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.《九章算术》中有一个“两鼠穿墙”问题:“今有垣(墙,读音)厚五尺,两鼠对穿,大鼠日(第一天)一尺,小鼠也日(第一天)一尺.大鼠日自倍(以后每天加倍),小鼠日自半(以后每天减半).问何日相逢,各穿几何?”
在两鼠“相逢”时,大鼠与小鼠“穿墙”的“进度”之比是59:26.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.定义在R上的函数y=f(x)满足f(x)•f(x+5)=3,f(1)=2,则f(2016)=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图是某几何体的三视图,则该几何体的表面积为63.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{1}{2}{x^2}$-alnx(a∈R).
(1)若函数f(x)在(0,+∞)为增函数,求实数a的取值范围;
(2)讨论方程f(x)=0解的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为30°,求|$\overrightarrow{a}$+$\overrightarrow{b}$|,|$\overrightarrow{a}$-$\overrightarrow{b}$|.

查看答案和解析>>

同步练习册答案