精英家教网 > 高中数学 > 题目详情
已知点是抛物线上不同的两点,点在抛物线的准线上,且焦点
到直线的距离为.
(I)求抛物线的方程;
(2)现给出以下三个论断:①直线过焦点;②直线过原点;③直线平行轴.
请你以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题,并加以证明.
(1) ;(2)参考解析

试题分析:(1)由点F到直线的距离为可求得抛物线中.从而得到抛物线方程.
(2)根据题意共有三种情况:i) ①直线过焦点;②直线过原点.由直线AB与抛物线的方程联立结合韦达定理,表示出点D,B的坐标即可得到③直线平行轴.ii) ①直线过焦点;③直线平行轴同样是表达出点D,B的坐标即可得到点A,O,D三点共线,即可得到结论.iii) ②直线过原点;③直线平行轴表达出点A,B的坐标关系即可得到点A,F,B三点共线,即得到结论.
(I)因为, 依题意得,             2分
解得,所以抛物线的方程为                       4分
(2)①命题:若直线过焦点,且直线过原点,则直线平行轴.
5分
设直线的方程为,                  6分
 得
,                                            8分
直线的方程为,                                9分
所以点的坐标为
,                            12分
直线平行于轴.                               13分
②命题:若直线过焦点,且直线平行轴,则直线过原点.
5分
设直线的方程为,               6分
 得
,                                          8分
即点的坐标为,                              9分
∵直线平行轴,∴点的坐标为,                10分

由于
,即三点共线,                     12分
∴直线过原点.                              13分
③命题:若直线过原点,且直线平行轴,则直线过焦点.       5分
设直线的方程为,则点的坐标为,           6分
∵直线平行轴,
,∴,即点的坐标为,                 8分

即点的坐标为,                    10分

由于
,即三点共线,                          12分
∴直线过焦点.                                13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆经过点,且两焦点与短轴的两个端点的连线构成一正方形.(12分)
(1)求椭圆的方程;
(2)直线与椭圆交于两点,若线段的垂直平分线经过点,求
为原点)面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率e=,斜率为2的直线l过点A(2,3).

(1)求椭圆E的方程;
(2)在椭圆E上是否存在关于直线l对称的相异两点?若存在,请找出;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,焦点在轴上,长轴长是短轴长的倍,其上一点到右焦点的最短距离为
(1)求椭圆的标准方程;
(2)若直线交椭圆两点,当时求直线的方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的左右焦点为,直线过点且垂直于椭圆的长轴,动直线垂直于直线于点P,线段的垂直平分线与的交点的轨迹为曲线,若上不同的点,且,则的取值范围是(  )
A.B.
C.D.以上都不正确

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,一个底面半径为的圆柱被与其底面所成角为的平面所截,截面是一个椭圆,当时,这个椭圆的离心率为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设双曲线-=1(a>0,b>0)的右焦点为F,过点F作与x轴垂直的直线l交两渐近线于A,B两点,且与双曲线在第一象限的交点为P,设O为坐标原点,若(λ,μ∈R),λμ=,则该双曲线的离心率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线C:y2=4x的焦点为F,直线y=2x-4与C交于A,B两点,则cos∠AFB等于(  )
A.B.C.-D.-

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆E的左右焦点分别F1,F2,过F1且斜率为2的直线交椭圆E于P、Q两点,若△PF1F2为直角三角形,则椭圆E的离心率为     .

查看答案和解析>>

同步练习册答案