【题目】已知美国苹果公司生产某款iphone手机的年固定成本为40万美元,每生产1万部还需要另外投入16美元,设苹果公司一年内共生产该款iphone手机
万部并全部销售完,每万部的销售收入为
万元,且
.
(1)写出年利润
(万元)关于年产量
(万部)的函数解析式;
(2)当年产量为多少万部时,苹果公司在该款手机的生产中所获得的利润最大?并求出最大利润.
科目:高中数学 来源: 题型:
【题目】2019年6月25日,《固体废物污染环境防治法(修订草案)》初次提请全国人大常委会审议,草案对“生活垃圾污染环境的防治”进行了专章规定.草案提出,国家推行生活垃圾分类制度.为了了解人民群众对垃圾分类的认识,某市环保部门对该市市民进行了一次垃圾分类网络知识问卷调查,每一位市民仅有一次参加机会,通过随机抽样,得到参加问卷调查的1000人的得分(满分:100分)数据,统计结果如下表所示:
得分 |
|
|
|
|
|
|
|
频数 | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)由频数分布表可以认为,此次问卷调查的得分
服从正态分布
,
近似为这1000人得分的平均值(同一组数据用该组区间的中点值作为代表),请利用正态分布的知识求
;
(2)在(1)的条件下,市环保部门为此次参加问卷调查的市民制定如下奖励方案:
①得分不低于
的可以获赠2次随机话费,得分低于
的可以获赠1次随机话费;
②每次获赠的随机话费和对应的概率为:
获赠的随机话费(单位:元) | 20 | 40 |
概率 |
|
|
现市民小王要参加此次问卷调查,记
(单位:元)为该市民参加问卷调查获赠的话费,求
的分布列及数学期望.
附:①
;
②若
,则
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,
且
,
且
,函数
.
(1)设
,
,若
是奇函数,求
的值;
(2)设
,
,判断函数
在
上的单调性并加以证明;
(3)设
,
,
,函数
的图象是否关于某垂直于
轴的直线对称?如果是,求出该对称轴,如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
的方程为
,过原点作斜率为
的直线和曲线
相交,另一个交点记为
,过
作斜率为
的直线和曲线
相交,另一个交点记为
,过
作斜率为
的直线和曲线
相交,另一个交点记为
,……,如此下去,一般地,过
作斜率为
的直线和曲线
相交,另一个交点记为
,设点
.
(1)指出
,并求
与
的关系式
;
(2)求
的通项公式,并指出点列
,
,……,
,……向哪一点无限接近?说明理由;
(3)令
,数列
的前
项和为
,设
,求所有可能的乘积
的和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若定义域均为D的三个函数f(x),g(x),h(x)满足条件:对任意x∈D,点(x,g(x)与点(x,h(x)都关于点(x,f(x)对称,则称h(x)是g(x)关于f(x)的“对称函数”.已知g(x)=
,f(x)=2x+b,h(x)是g(x)关于f(x)的“对称函数”,且h(x)≥g(x)恒成立,则实数b的取值范围是_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学在一山坡
处看对面山顶上的一座铁塔,如图所示,塔及所在的山崖可视为图中的竖线
,塔高
为80米,山高
为220米,
为200米,图中所示的山坡可视为直线
且点
在直线
上,
与水平地面的夹角为
,
.
![]()
(1)求塔尖
到山坡的距离;(精确到米)
(2)问此同学(忽略身高)距离山崖的水平地面多高时,观看塔的视角
最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,直线
经过点
,其倾斜角为
,以原点
为极点,以
轴为非负半轴为极轴,与坐标系
取相同的长度单位,建立极坐标系.设曲线
的极坐标方程为
.
(1)若直线
与曲线
有公共点,求倾斜角
的取值范围;
(2)设
为曲线
上任意一点,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com