精英家教网 > 高中数学 > 题目详情
13.已知点A(-1,1),B(3,3)是圆C的一条直径的两个端点,又点M在圆C上运动,点N(4,-2),求线段MN的中点P的轨迹方程.

分析 求出圆C的方程,利用代入法,求出线段MN的中点P的轨迹方程.

解答 解:由题意,AB的中点C(1,2),AC=$\sqrt{(1+1)^{2}+(2-1)^{2}}$=$\sqrt{5}$,
∴圆C:(x-1)2+(y-2)2=5,
设P(x,y),则M(2x-4,2y+2),
∵点M在圆C上运动,
∴(2x-4-1)2+(2y+2-2)2=5,
即(x-2.5)2+y2=1.25.

点评 本题考查圆的方程,考查代入法的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.求下列函数周期:
(1)y=|sinx|+sinx
(2)y=2sin(2x+$\frac{π}{3}$),x∈[-$\frac{π}{6}$,$\frac{π}{6}$]
(3)y=$\frac{cosx-2}{cosx-1}$
(4)y=2cos(2x+$\frac{π}{3}$),x∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知某几何体的三视图如图所示,则该几何体的表面积为(  )
A.$\frac{7}{3}$B.$\frac{17}{2}$C.13D.$\frac{17+3\sqrt{10}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,若a=$\sqrt{3}$,b=1,c=2,则△ABC的面积等于(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{6}+\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则f(x)=$\sqrt{2}$sin($\frac{π}{8}$x+$\frac{π}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知sin(θ+$\frac{π}{2}$)<0,cos(θ-$\frac{π}{2}$)>0,则下列不等式关系必定成立的是(  )
A.tan2$\frac{θ}{2}$<1B.tan2$\frac{θ}{2}$>1C.sin$\frac{θ}{2}$>cos$\frac{θ}{2}$D.sin$\frac{θ}{2}$<cos$\frac{θ}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=$\root{3}{{x}^{2}}$-x2+2的图象在以点(1,y1)为切点的切线与坐标轴所围成的三角形面积等于(  ),函数y=x3图象上过点(1,y2)的切线与两条坐标轴所围成的三角形面积等于(  )
A.$\frac{25}{6}$B.$\frac{2}{3}$C.$\frac{2}{3}$或$\frac{1}{24}$D.$\frac{15}{4}$
E.$\frac{7}{3}$F.$\frac{15}{4}$或$\frac{7}{3}$      

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知A,B∈[-$\frac{π}{2}$,$\frac{π}{2}$],且cosA+cosB=cosAcosB,则sin(A-B)的值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下面各组函数中为相同函数的是(  )
A.f(x)=$\sqrt{(x-1)^{2}}$,g(x)=x-1B.f(x)=$\sqrt{{x}^{2}-1}$,g(x)=$\sqrt{x+1}$•$\sqrt{x-1}$
C.f(x)=ln ex与g(x)=elnxD.f(x)=(x-1)0与g(x)=$\frac{1}{(x-1)^{0}}$

查看答案和解析>>

同步练习册答案