精英家教网 > 高中数学 > 题目详情
18.已知sin(θ+$\frac{π}{2}$)<0,cos(θ-$\frac{π}{2}$)>0,则下列不等式关系必定成立的是(  )
A.tan2$\frac{θ}{2}$<1B.tan2$\frac{θ}{2}$>1C.sin$\frac{θ}{2}$>cos$\frac{θ}{2}$D.sin$\frac{θ}{2}$<cos$\frac{θ}{2}$

分析 利用诱导公式求得cosθ<0,sinθ>0,可得 θ∈(2kπ+$\frac{π}{2}$,2kπ+π),$\frac{θ}{2}$∈(kπ+$\frac{π}{4}$,kπ+$\frac{π}{2}$),从而得出结论.

解答 解:∵sin(θ+$\frac{π}{2}$)=cosθ<0,cos(θ-$\frac{π}{2}$)=sinθ>0,
∴θ∈(2kπ+$\frac{π}{2}$,2kπ+π),∴$\frac{θ}{2}$∈(kπ+$\frac{π}{4}$,kπ+$\frac{π}{2}$),
∴${tan}^{2}\frac{θ}{2}$>1,
故选:B.

点评 本题主要考查三角函数的化简求值,求得 $\frac{θ}{2}$∈(kπ+$\frac{π}{4}$,kπ+$\frac{π}{2}$),是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.为了了解学生平均每天零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观,某校从高一年级1000名学生中随机抽取100名进行了调查,将所得数据整理后,画出频率分布直方图(如图),据此估计高一年级每天零花钱在[6,14)内的学生数为(  )
A.780B.680C.648D.460

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,则下列关系正确的是(  )
A.|$\overrightarrow{a}•\overrightarrow{b}$|=|$\overrightarrow{a}$||$\overrightarrow{b}$|B.|$\overrightarrow{a}•\overrightarrow{b}$|≤|$\overrightarrow{a}$||$\overrightarrow{b}$|
C.|$\overrightarrow{a}•\overrightarrow{b}$|≥|$\overrightarrow{a}$||$\overrightarrow{b}$|D.以上答案都不正确

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.命题p:?a∈(-∞,-$\frac{1}{4}$],使得函数f(x)=|2x+$\frac{a}{{2}^{x}}$|在[-$\frac{1}{2}$,3]上单调递增;命题q:?a∈[2,+∞),直线2x+y=0与双曲线$\frac{{y}^{2}}{{a}^{2}}$-x2=1(a>0)相交.则下列命题中正确的是(  )
A.¬pB.p∧qC.(¬p)∨qD.p∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知点A(-1,1),B(3,3)是圆C的一条直径的两个端点,又点M在圆C上运动,点N(4,-2),求线段MN的中点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在数列{an}中,an+1=an+t(n∈N*),其前n项和Sn=A•n2+B•n+c,则实数c为(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求由直线x=1,x=3,y=0和曲线y=3x2所围成的图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.当x∈[-2,0)时,不等式ax3-x2+4x+3≥0恒成立,则实数a的取值范围是a≤-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知$f(x)={sin^2}x+cosx,x∈[{-\frac{π}{3},\frac{2π}{3}}]$,则f(x)的值域为[$\frac{1}{4}$,$\frac{5}{4}$].

查看答案和解析>>

同步练习册答案