精英家教网 > 高中数学 > 题目详情
10.若点A(4,0)与点B(0,2)关于直线l对称,则直线l的斜率为2.

分析 由两点坐标求直线AB的斜率,再由两直线垂直与斜率的关系可得直线l的斜率.

解答 解:∵点A(4,0)与点B(0,2)关于直线l对称,
∴kl•kAB=-1,
而${k}_{AB}=\frac{2-0}{0-4}=-\frac{1}{2}$,
∴kl=2,
即直线l的斜率为2.
故答案为:2.

点评 本题考查由两点坐标求直线的斜率,考查两直线垂直与斜率的关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.若f(x)=lnx-mx.
(1)讨论方程f(x)=0的解的个数;
(2)若f(x1)=f(x2)=0,且x1≠x2,求证:ln$\frac{{x}_{1}+{x}_{2}}{2}$>1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知下列命题:
①向量$\overrightarrow{a}$,$\overrightarrow{b}$不共线,则向量$\overrightarrow{a}$+$\overrightarrow{b}$与向量$\overrightarrow{a}$-$\overrightarrow{b}$一定不共线
②对任意向量$\overrightarrow{a}$,$\overrightarrow{b}$,则|$\overrightarrow{a}$-$\overrightarrow{b}$|≥||$\overrightarrow{a}$|-|$\overrightarrow{b}$||恒成立
③在同一平面内,对两两均不共线的向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,若给定单位向量$\overrightarrow{b}$和正数λ,总存在单位向量$\overrightarrow{c}$和实数μ,使得$\overrightarrow{a}$=λ$\overrightarrow{c}$+μ$\overrightarrow{b}$
则正确的序号为(  )
A.①②③B.①③C.②③D.①②

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=sin2x-2sin2x.
(I)求函数f(x)的最小正周期和单调递增区间.
(II)求函数f(x)在[-$\frac{π}{2}$,0]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若函数f(x)=sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示,则ω和φ的值分别是(  )
A.ω=2,φ=$\frac{π}{4}$B.ω=2,φ=-$\frac{π}{4}$C.ω=$\frac{1}{2}$,φ=$\frac{π}{8}$D.ω=$\frac{1}{2}$,φ=-$\frac{π}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}为等比数列,且a2=1,a5=27,{bn}为等差数列,且b1=a3,b4=a4
(I)分别求数列{an},{bn}的通项公式.
(II)设数列{bn}的前n项和为Sn,求数列{$\frac{2}{{S}_{n}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列命题中正确命题的个数是(  )
①和同一平面垂直的两个平面平行;
②和同一平面垂直的两条直线平行;
③两条直线与一个平面所成的角相等,则这两条直线平行;
④一条直线与两个平面所成的角相等,则这两个平面平行.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(0)=1,则不等式f(x)<ex的解集为(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知x,y满足不等式组$\left\{\begin{array}{l}x-y+2≥0\\ 2x-y≤0\\ x≥0\end{array}\right.$,则z=2y-x的最大值为6.

查看答案和解析>>

同步练习册答案