| A. | -2 | B. | -1 | C. | 2 | D. | 1 |
分析 由f(x)的解析式便知f(x)关于x=a对称,而由f(1+x)=f(3-x)知f(x)关于x=2对称,从而得出a=2,这样便可得出f(x)的单调递增区间为[2,+∞),而f(x)在[m,+∞)上单调递增,从而便得出m的最小值为2.
解答 解:∵f(x)=2|x-a|;
∴f(x)关于x=a对称;
又f(1+x)=f(3-x);
∴f(x)关于x=2对称;
∴a=2;
∴$f(x)={2}^{|x-2|}=\left\{\begin{array}{l}{{2}^{x-2}}&{x≥2}\\{{2}^{-x+2}}&{x<2}\end{array}\right.$;
∴f(x)的单调递增区间为[2,+∞);
又f(x)在[m,+∞)上单调递增;
∴实数m的最小值为2.
故选:C.
点评 考查函数图象的对称性,清楚f(x)=|x-a|的图象关于x=a对称,由f(x+a)=f(b-x)知f(x)关于直线x=$\frac{a+b}{2}$对称,以及指数函数和分段函数的单调性.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {0,1} | B. | {-1,1} | C. | {1} | D. | {-1,0,1} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | 1 | 2 | 3 | 4 | 5 |
| y | 2.9 | 3.3 | 3.6 | 4.4 | 5.1 |
| u | 1 | 2 | 3 | 4 | 5 |
| v | 25 | 20 | 21 | 15 | 13 |
| A. | 变量x与y正相关,u与v正相关 | B. | 变量x与y负相关,u与v正相关 | ||
| C. | 变量x与y负相关,u与v负相关 | D. | 变量x与y正相关,u与v负相关 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向左平移$\frac{π}{3}$个单位 | B. | 向右平移$\frac{π}{3}$个单位 | ||
| C. | 向左平移$\frac{π}{6}$个单位 | D. | 向右平移$\frac{2π}{3}$个单位 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 日需求量n(瓶) | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
| 频数 | 5 | 5 | 8 | 12 | 10 | 6 | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com