精英家教网 > 高中数学 > 题目详情
7.已知实数x,y满足$\left\{\begin{array}{l}{x-y-2≥0}\\{x+y-6≤0}\\{x-3y-2≤0}\end{array}\right.$,若目标函数z=x+ay取得最小值的最优解有无数个,则$\frac{y}{x-a}$的最大值是$\frac{2}{5}$.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,得到满足题意的a值,再由$\frac{y}{x-a}$的几何意义求得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x-y-2≥0}\\{x+y-6≤0}\\{x-3y-2≤0}\end{array}\right.$作出可行域如图,

化目标函数z=x+ay为$y=-\frac{1}{a}x+\frac{z}{a}$,
若a>0,不满足题意;
∴a<0,要使目标函数z=x+ay取得最小值的最优解有无数个,
则$-\frac{1}{a}=1$,a=-1.
$\frac{y}{x-a}$的几何意义为可行域内的动点与定点P(-1,0)连线的斜率,
联立$\left\{\begin{array}{l}{x-y-2=0}\\{x-3y-2=0}\end{array}\right.$,解得A(4,2),
∴$\frac{y}{x-a}$的最大值为${k}_{PA}=\frac{2-0}{4-(-1)}=\frac{2}{5}$.
故答案为:$\frac{2}{5}$.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,考查数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.某次实验中测得(x,y)的四组数值如图所示,若根据该表的回归方程$\widehaty$=-5x+126.5,则m的值为(  )
x16171819
y5034m31
A.39B.40C.41D.42

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=bx+c(b,c∈R)的图象过点(0,1),且满足f(1)=2.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若函数y=2f(x)-1在[m,2m](m>0)上的最大与最小值之和为6,求实数m的值;
(Ⅲ)若实数t为函数g(x)=(a-1)x-1+logaf(x)(0<a<2且a≠1)的一个零点,求证:函数M(x)=x2+1的图象恒在函数N(x)=2tx图象的上方.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知圆C的方程为(x-1)2+(y-2)2=4.
(Ⅰ)求过点M(3,1)的圆C的切线方程;
(Ⅱ)判断直线ax-y+3=0与圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数f(x)=2|x-a|(a∈R)满足f(1+x)=f(3-x),且f(x)在[m,+∞)单调递增,则实数m的最小值为(  )
A.-2B.-1C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知四面体P-ABC中,PA=PB=4,PC=2,AC=2$\sqrt{5}$,PB⊥平面PAC,则四面体P-ABC外接球的表面积为36π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如果实数x,y满足条件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-2≥0}\\{2x-y-2≤0}\end{array}\right.$,则z=$\frac{x}{y}$的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.一个扇形的半径为2cm,中心角为60°,则该扇形的弧长为$\frac{2π}{3}$cm.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知P=log23,Q=log3$\frac{3}{4}$,R=$(\frac{10}{9})^{\frac{1}{2}}$,那么将这三个数从大到小排列为P>R>Q.

查看答案和解析>>

同步练习册答案