分析 (Ⅰ)由圆的方程找出圆心坐标与半径,分两种情况考虑:若切线方程斜率不存在,直线x=3满足题意;若斜率存在,设出切线方程,根据直线与圆相切时圆心到切线的距离d=r,求出k的值,综上即可确定出满足题意的切线方程;
(Ⅱ)直线ax-y+3=0恒过点(0,3),(0,3)在圆内,即可得出结论.
解答 解:(Ⅰ)由圆的方程得到圆心(1,2),半径r=2,
当直线斜率不存在时,方程x=3与圆相切;
当直线斜率存在时,设方程为y-1=k(x-3),即kx-y+1-3k=0,
由题意得:$\frac{|k-2+1-3k|}{\sqrt{{k}^{2}+1}}$=2,
解得:k=$\frac{3}{4}$,
∴方程为y-1=$\frac{3}{4}$(x-3),即3x-4y-5=0,
则过点M的切线方程为x=3或3x-4y-5=0;
(Ⅱ)直线ax-y+3=0恒过点(0,3),
∵(0-1)2+(3-2)2=2<4,
∴(0,3)在圆内,
∴直线ax-y+3=0与圆C相交.
点评 此题考查了直线与圆相交的性质,涉及的知识有:点到直线的距离公式,垂径定理,勾股定理,以及圆的标准方程,利用了分类讨论的思想,熟练掌握定理及公式是解本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1) | B. | (0,4) | C. | (0,1) | D. | (1,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com