12£®ÒÑÖªA£¨x0£¬0£©£¬B£¨0£¬y0£©Á½µã·Ö±ðÔÚxÖáºÍyÖáÉÏÔ˶¯£¬ÇÒ|AB|=1£¬Èô¶¯µãP£¨x£¬y£©Âú×ã$\overrightarrow{OP}=2\overrightarrow{OA}+\sqrt{3}\overrightarrow{OB}$£®
£¨I£©Çó³ö¶¯µãPµÄ¹ì¼£¶ÔÓ¦ÇúÏßCµÄ±ê×¼·½³Ì£»
£¨¢ò£©Ò»Ìõ×ݽؾàΪ2µÄÖ±Ïßl1ÓëÇúÏßC½»ÓÚP£¬QÁ½µã£¬ÈôÒÔPQÖ±¾¶µÄԲǡ¹ýÔ­µã£¬Çó³öÖ±Ïß·½³Ì£»
£¨¢ó£©Ö±Ïßl2£ºx=ty+1ÓëÇúÏßC½»ÓÚA¡¢BÁ½µã£¬E£¨1£¬0£©£¬ÊÔÎÊ£ºµ±t±ä»¯Ê±£¬ÊÇ·ñ´æÔÚÒ»Ö±Ïßl2£¬Ê¹¡÷ABEµÄÃæ»ýΪ$2\sqrt{3}$£¿Èô´æÔÚ£¬Çó³öÖ±Ïßl2µÄ·½³Ì£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©¸ù¾ÝÏòÁ¿µÄ×ø±êÔËË㣬ÒÔ¼°|AB|=1£¬µÃµ½ÍÖÔ²µÄ±ê×¼·½³ÌΪ$\frac{x^2}{4}+\frac{y^2}{3}=1$£®
£¨¢ò£©Ö±Ïßl1бÂʱشæÔÚ£¬ÇÒ×ݽؾàΪ2£¬¸ù¾ÝÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¼´¿ÉÇó³ökµÄÖµ£¬ÎÊÌâµÃÒÔ½â¾ö£®
£¨¢ó£©¸ù¾ÝÖ±ÏߺÍÍÖÔ²¶îλÖùØÏµ£¬ÒÔ¼°Èý½ÇÐεÄÃæ»ý¹«Ê½µÃµ½S¡÷ABE=$\frac{12\sqrt{{t}^{2}+1}}{3{t}^{2}+4}$£¬Áî=$\frac{12\sqrt{{t}^{2}+1}}{3{t}^{2}+4}$=2$\sqrt{3}$£¬Ôò${t^2}=-\frac{2}{3}$²»³ÉÁ¢£¬ÎÊÌâµÃÒÔ½â¾ö£®

½â´ð ½â£º£¨¢ñ£© ÒòΪ$\overrightarrow{OP}=2\overrightarrow{OA}+\sqrt{3}\overrightarrow{OB}$£¬
¼´$£¨x£¬y£©=2£¨{x_0}£¬0£©+\sqrt{3}£¨0£¬{y_0}£©=£¨2{x_0}£¬\sqrt{3}{y_0}£©$£¬
ËùÒÔ$x=2{x_0}£¬y=\sqrt{3}{y_0}$£¬
ËùÒÔ${x_0}=\frac{1}{2}x£¬{y_0}=\frac{{\sqrt{3}}}{3}y$
ÓÖÒòΪ|AB|=1£¬ËùÒÔ${x_0}^2+{y_0}^2=1$£¬
¼´£º${£¨\frac{1}{2}x£©^2}+{£¨\frac{{\sqrt{3}}}{3}y£©^2}=1$£¬
¼´$\frac{x^2}{4}+\frac{y^2}{3}=1$£¬
ËùÒÔÍÖÔ²µÄ±ê×¼·½³ÌΪ$\frac{x^2}{4}+\frac{y^2}{3}=1$£®
£¨¢ò£© Ö±Ïßl1бÂʱشæÔÚ£¬ÇÒ×ݽؾàΪ2£¬ÉèÖ±ÏßΪy=kx+2ÁªÁ¢Ö±Ïßl1ºÍÍÖÔ²·½³Ì$\left\{\begin{array}{l}y=kx+2\\ \frac{x^2}{4}+\frac{y^2}{3}=1\end{array}\right.$£¬
µÃ£º£¨3+4k2£©x2+16kx+4=0£¬
ÓÉ¡÷£¾0£¬µÃ${k^2}£¾\frac{1}{4}$£¨*£©£¬
ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬
Ôò${x_1}+{x_2}=-\frac{16k}{{3+4{k^2}}}£¬{x_1}{x_2}=\frac{4}{{3+4{k^2}}}$  £¨1£©
ÒÔPQÖ±¾¶µÄԲǡ¹ýÔ­µã£¬
ËùÒÔOP¡ÍOQ£¬$\overrightarrow{OP}•\overrightarrow{OQ}=0$£¬
¼´x1x2+y1y2=0£¬
Ò²¼´x1x2+£¨kx1+2£©£¨kx2+2£©=0£¬
¼´£¨1+k2£©x1x2+2k£¨x1+x2£©+4=0£¬
½«£¨1£©Ê½´úÈ룬µÃ$\frac{4£¨1+{k}^{2}£©}{3+4{k}^{2}}$-$\frac{32{k}^{2}}{3+4{k}^{2}}$+4=0£¬
¼´4£¨1+k2£©-32k2+4£¨3+4k2£©=0£¬
½âµÃ${k^2}=\frac{4}{3}$£¬Âú×㣨*£©Ê½£¬
ËùÒÔ$k=¡À\frac{{2\sqrt{3}}}{3}$£®
ËùÒÔÖ±Ïß·½³ÌΪy=¡À$\frac{2\sqrt{3}}{3}$x+2
£¨¢ó£©ÓÉ·½³Ì×é$\left\{\begin{array}{l}x=ty+1\\ \frac{x^2}{4}+\frac{y^2}{3}=1\end{array}\right.$£¬µÃ£¨3t2+4£©y2+6ty-9=0£¨*£©
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
Ôò${y_1}+{y_2}=-\frac{6t}{{3{t^2}+4}}£¬{y_1}•{y_2}=-\frac{9}{{3{t^2}+4}}£¼0$
ËùÒÔ$\left|{{y_1}-{y_2}}\right|=\sqrt{{{£¨{{y_1}+{y_2}}£©}^2}-4{y_1}{y_2}}=\sqrt{{{£¨-\frac{6t}{{3{t^2}+4}}£©}^2}-4£¨-\frac{9}{{3{t^2}+4}}£©}=\frac{{12\sqrt{{t^2}+1}}}{{3{t^2}+4}}$£¬
ÒòΪֱÏßl£ºx=ty+1¹ýµãF£¨1£¬0£©£¬
ËùÒÔS¡÷ABE=$\frac{1}{2}$|EF|•|y1-y2|=$\frac{1}{2}$¡Á2¡Á$\frac{12\sqrt{{t}^{2}+1}}{3{t}^{2}+4}$=$\frac{12\sqrt{{t}^{2}+1}}{3{t}^{2}+4}$
Áî=$\frac{12\sqrt{{t}^{2}+1}}{3{t}^{2}+4}$=2$\sqrt{3}$£¬Ôò${t^2}=-\frac{2}{3}$²»³ÉÁ¢
¹Ê²»´æÔÚÖ±ÏßlÂú×ãÌâÒ⣮

µãÆÀ ±¾Ì⿼²éÏòÁ¿µÄ×ø±êÔËËãÒÔ¼°ÍÖÔ²µÄ±ê×¼·½³ÌºÍÖ±ÏߺÍÍÖÔ²µÄλÖùØÏµ£¬ÅàÑøÁËѧÉúµÄת»¯ÄÜÁ¦£¬ÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÔÚ¡÷ABCÖУ¬AB=4£¬BC=6$\sqrt{2}$£¬¡ÏCBA=$\frac{¦Ð}{4}$£¬£®ÈôË«ÇúÏߦ£ÒÔABΪʵÖᣬÇÒ¹ýµãC£¬Ôò¦£µÄ½¹¾àΪ8£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®É躯Êýf£¨x£©=x2-ax+b£¨a£¬b¡ÊR£©
£¨¢ñ£©Èôº¯Êýf£¨x£©ÔÚ[0£¬1]Éϲ»µ¥µ÷£¬ÇóaµÄȡֵ·¶Î§
£¨¢ò£©¶ÔÈÎÒâx¡Ê[-1£¬1]£¬¶¼´æÔÚy¡ÊR£¬Ê¹µÃf£¨y£©=f£¨x£©+y³ÉÁ¢£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªÅ×ÎïÏßC£ºy2=12xµÄ½¹µãΪF£¬×¼ÏßΪl£¬PΪlÉÏÒ»µã£¬QÊÇÖ±ÏßPFÓëÅ×ÎïÏßµÄÒ»¸ö½»µã£¬Èô2$\overrightarrow{FP}$+3$\overrightarrow{FQ}$=$\overrightarrow{0}$£¬Ôò$\overrightarrow{|QF|}$=£¨¡¡¡¡£©
A£®5B£®$\frac{15}{2}$C£®10D£®15

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Æ½ÃæÏòÁ¿$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇΪ$\frac{¦Ð}{3}$£¬$\overrightarrow{a}$=£¨2£¬0£©£¬|$\overrightarrow{b}$|=1£¬Ôò|$\overrightarrow{a}$-2$\overrightarrow{b}$|=£¨¡¡¡¡£©
A£®$2\sqrt{3}$B£®0C£®$\sqrt{6}$D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Ä³´ÎʵÑéÖвâµÃ£¨x£¬y£©µÄËÄ×éÊýÖµÈçͼËùʾ£¬Èô¸ù¾Ý¸Ã±íµÄ»Ø¹é·½³Ì$\widehaty$=-5x+126.5£¬ÔòmµÄֵΪ£¨¡¡¡¡£©
x16171819
y5034m31
A£®39B£®40C£®41D£®42

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÔF£¨1£¬0£©Îª½¹µãµÄÅ×ÎïÏߵıê×¼·½³ÌÊÇ£¨¡¡¡¡£©
A£®x=4y2B£®y=4x2C£®x2=4yD£®y2=4x

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖªµãA£¨m£¬-2£¬n£©£¬µãB£¨-5£¬6£¬24£©ºÍÏòÁ¿$\overrightarrow a=£¨-3£¬4£¬12£©$ÇÒ$\overrightarrow{AB}$¡Î$\overrightarrow a$£®ÔòµãAµÄ×ø±êΪ£¨1£¬-2£¬0£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Èôº¯Êýf£¨x£©=2|x-a|£¨a¡ÊR£©Âú×ãf£¨1+x£©=f£¨3-x£©£¬ÇÒf£¨x£©ÔÚ[m£¬+¡Þ£©µ¥µ÷µÝÔö£¬ÔòʵÊýmµÄ×îСֵΪ£¨¡¡¡¡£©
A£®-2B£®-1C£®2D£®1

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸