·ÖÎö £¨¢ñ£©¸ù¾ÝÏòÁ¿µÄ×ø±êÔËË㣬ÒÔ¼°|AB|=1£¬µÃµ½ÍÖÔ²µÄ±ê×¼·½³ÌΪ$\frac{x^2}{4}+\frac{y^2}{3}=1$£®
£¨¢ò£©Ö±Ïßl1бÂʱشæÔÚ£¬ÇÒ×ݽؾàΪ2£¬¸ù¾ÝÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¼´¿ÉÇó³ökµÄÖµ£¬ÎÊÌâµÃÒÔ½â¾ö£®
£¨¢ó£©¸ù¾ÝÖ±ÏߺÍÍÖÔ²¶îλÖùØÏµ£¬ÒÔ¼°Èý½ÇÐεÄÃæ»ý¹«Ê½µÃµ½S¡÷ABE=$\frac{12\sqrt{{t}^{2}+1}}{3{t}^{2}+4}$£¬Áî=$\frac{12\sqrt{{t}^{2}+1}}{3{t}^{2}+4}$=2$\sqrt{3}$£¬Ôò${t^2}=-\frac{2}{3}$²»³ÉÁ¢£¬ÎÊÌâµÃÒÔ½â¾ö£®
½â´ð ½â£º£¨¢ñ£© ÒòΪ$\overrightarrow{OP}=2\overrightarrow{OA}+\sqrt{3}\overrightarrow{OB}$£¬
¼´$£¨x£¬y£©=2£¨{x_0}£¬0£©+\sqrt{3}£¨0£¬{y_0}£©=£¨2{x_0}£¬\sqrt{3}{y_0}£©$£¬
ËùÒÔ$x=2{x_0}£¬y=\sqrt{3}{y_0}$£¬
ËùÒÔ${x_0}=\frac{1}{2}x£¬{y_0}=\frac{{\sqrt{3}}}{3}y$
ÓÖÒòΪ|AB|=1£¬ËùÒÔ${x_0}^2+{y_0}^2=1$£¬
¼´£º${£¨\frac{1}{2}x£©^2}+{£¨\frac{{\sqrt{3}}}{3}y£©^2}=1$£¬
¼´$\frac{x^2}{4}+\frac{y^2}{3}=1$£¬
ËùÒÔÍÖÔ²µÄ±ê×¼·½³ÌΪ$\frac{x^2}{4}+\frac{y^2}{3}=1$£®
£¨¢ò£© Ö±Ïßl1бÂʱشæÔÚ£¬ÇÒ×ݽؾàΪ2£¬ÉèÖ±ÏßΪy=kx+2ÁªÁ¢Ö±Ïßl1ºÍÍÖÔ²·½³Ì$\left\{\begin{array}{l}y=kx+2\\ \frac{x^2}{4}+\frac{y^2}{3}=1\end{array}\right.$£¬
µÃ£º£¨3+4k2£©x2+16kx+4=0£¬
ÓÉ¡÷£¾0£¬µÃ${k^2}£¾\frac{1}{4}$£¨*£©£¬
ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬
Ôò${x_1}+{x_2}=-\frac{16k}{{3+4{k^2}}}£¬{x_1}{x_2}=\frac{4}{{3+4{k^2}}}$ £¨1£©
ÒÔPQÖ±¾¶µÄԲǡ¹ýԵ㣬
ËùÒÔOP¡ÍOQ£¬$\overrightarrow{OP}•\overrightarrow{OQ}=0$£¬
¼´x1x2+y1y2=0£¬
Ò²¼´x1x2+£¨kx1+2£©£¨kx2+2£©=0£¬
¼´£¨1+k2£©x1x2+2k£¨x1+x2£©+4=0£¬
½«£¨1£©Ê½´úÈ룬µÃ$\frac{4£¨1+{k}^{2}£©}{3+4{k}^{2}}$-$\frac{32{k}^{2}}{3+4{k}^{2}}$+4=0£¬
¼´4£¨1+k2£©-32k2+4£¨3+4k2£©=0£¬
½âµÃ${k^2}=\frac{4}{3}$£¬Âú×㣨*£©Ê½£¬
ËùÒÔ$k=¡À\frac{{2\sqrt{3}}}{3}$£®
ËùÒÔÖ±Ïß·½³ÌΪy=¡À$\frac{2\sqrt{3}}{3}$x+2
£¨¢ó£©ÓÉ·½³Ì×é$\left\{\begin{array}{l}x=ty+1\\ \frac{x^2}{4}+\frac{y^2}{3}=1\end{array}\right.$£¬µÃ£¨3t2+4£©y2+6ty-9=0£¨*£©
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
Ôò${y_1}+{y_2}=-\frac{6t}{{3{t^2}+4}}£¬{y_1}•{y_2}=-\frac{9}{{3{t^2}+4}}£¼0$
ËùÒÔ$\left|{{y_1}-{y_2}}\right|=\sqrt{{{£¨{{y_1}+{y_2}}£©}^2}-4{y_1}{y_2}}=\sqrt{{{£¨-\frac{6t}{{3{t^2}+4}}£©}^2}-4£¨-\frac{9}{{3{t^2}+4}}£©}=\frac{{12\sqrt{{t^2}+1}}}{{3{t^2}+4}}$£¬
ÒòΪֱÏßl£ºx=ty+1¹ýµãF£¨1£¬0£©£¬
ËùÒÔS¡÷ABE=$\frac{1}{2}$|EF|•|y1-y2|=$\frac{1}{2}$¡Á2¡Á$\frac{12\sqrt{{t}^{2}+1}}{3{t}^{2}+4}$=$\frac{12\sqrt{{t}^{2}+1}}{3{t}^{2}+4}$
Áî=$\frac{12\sqrt{{t}^{2}+1}}{3{t}^{2}+4}$=2$\sqrt{3}$£¬Ôò${t^2}=-\frac{2}{3}$²»³ÉÁ¢
¹Ê²»´æÔÚÖ±ÏßlÂú×ãÌâÒ⣮
µãÆÀ ±¾Ì⿼²éÏòÁ¿µÄ×ø±êÔËËãÒÔ¼°ÍÖÔ²µÄ±ê×¼·½³ÌºÍÖ±ÏߺÍÍÖÔ²µÄλÖùØÏµ£¬ÅàÑøÁËѧÉúµÄת»¯ÄÜÁ¦£¬ÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 5 | B£® | $\frac{15}{2}$ | C£® | 10 | D£® | 15 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $2\sqrt{3}$ | B£® | 0 | C£® | $\sqrt{6}$ | D£® | 2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| x | 16 | 17 | 18 | 19 |
| y | 50 | 34 | m | 31 |
| A£® | 39 | B£® | 40 | C£® | 41 | D£® | 42 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | x=4y2 | B£® | y=4x2 | C£® | x2=4y | D£® | y2=4x |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | -2 | B£® | -1 | C£® | 2 | D£® | 1 |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com