分析 (Ⅰ)由图形可确定A,周期T,从而可得ω的值,再由f($\frac{π}{6}$)=2,得2×$\frac{π}{6}$+φ=$\frac{π}{2}$+2kπ(k∈Z),进一步结合条件可得φ的值,即可解得f(x)的解析式,由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,可得函数f(x)的单调递增区间;
(Ⅱ)由正弦函数的图象和性质,由2x+$\frac{π}{6}$=2kπ-$\frac{π}{2}$(k∈Z),即可解得函数f(x)的最小值并指出函数f(x)取最小值时相应的x的值.
解答 解:(Ⅰ)由函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)(x∈R)的部分图象可得A=2,最小正周期T=2($\frac{2π}{3}-\frac{π}{6}$)=π,得ω=2,可得函数f(x)的解析式为f(x)=2sin(2x+φ),
又f($\frac{π}{6}$)=2,
所以sin($\frac{π}{3}$+φ)=1,
由于|φ|<$\frac{π}{2}$,可得φ=$\frac{π}{6}$,
所以函数f(x)的解析式为:f(x)=2sin(2x+$\frac{π}{6}$)------------(6分)
由于2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,可得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$(k∈Z),
所以函数f(x)的单调递增区间为:[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z),---------(8分)
(Ⅱ)函数f(x)的最小值为-2,------------(9分)
函数f(x)取最小值-2时,有2x+$\frac{π}{6}$=2kπ-$\frac{π}{2}$(k∈Z),可得:x=kπ-$\frac{π}{3}$(k∈Z),
所以函数f(x)取最小值-2时相应的x的值是:x=kπ-$\frac{π}{3}$(k∈Z).--------(12分)
点评 本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,考查了正弦函数的图象和性质,难点在于相位φ的确定,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{24}{25}$ | B. | $\frac{14}{25}$ | C. | $\frac{12}{25}$ | D. | $\frac{7}{25}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com