精英家教网 > 高中数学 > 题目详情
1.已知等差数列{an}满足a1+a2=10,a4-a3=2.
(1)求数列{an}的通项公式;
(2)若等比数列{bn}满足b2=a3,b3=a7,求数列{bn}的通项公式.

分析 (1)设出等差数列的公差,由已知列式求得公差,进一步求出首项,代入等差数列的通项公式求数列{an}的通项公式;
(2)由b2=a3,b3=a7,结合(1)中等差数列的通项公式求得b2,b3的值,进一步求得等比数列的公比q及首项,则等比数列的通项公式可求.

解答 解:(1)设等差数列{an}的公差为d,则d=a4-a3=2,
又a1+a2=10,
∴2a1+d=10,解得a1=4,
∴an=4+2(n-1)=2n+2;
(2)设等比数列{bn}的公比为q,
由(1)知b2=a3=8,b3=a7=16,
∴$q=\frac{{b}_{3}}{{b}_{2}}=2$,
又b2=8=b1q,有b1=4,
∴${b}_{n}=4×{2}^{n-1}={2}^{n+1}$.

点评 本题考查数列递推式,考查了等差数列与等比数列通项公式的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.在△ABC中,角A、B、C的对边分别为a、b、c,若cos2A+cos2C+$\sqrt{2}$sinAsinC=1+cos2B.则$\sqrt{2}$sinA+cosC的最大值是(  )
A.1B.2C.$\frac{3\sqrt{2}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设变量x,y满足约束条件:$\left\{\begin{array}{l}y≥x\\ x+2y≤2\\ x≥-2\end{array}\right.$,则z=2x+y的最小值是-6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)(x∈R)的部分图象如图所示.(Ⅰ)求函数f(x)的解析式并求函数f(x)的单调递增区间;
(Ⅱ)求函数f(x)的最小值并指出函数f(x)取最小值时相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,正方体ABCD-A1B1C1D1中,点P在侧面BCC1B1及其边界上运动,并且总是保持AP⊥BD1,试证明动点P在线段B1C上.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知为虚数单位,复数z满足z=$\frac{1+i}{1-i}$,则z2=(  )
A.1B.-1C.2iD.-2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.复数z=$\frac{(1-i)^{2}}{3+i}$的所对应的点位于复平面的(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,a,b,c分别为角A,B,C的对边,且cos(B-C)-2sinBsinC=-$\frac{1}{2}$.
(1)求角A的大小;
(2)当a=5,b=4时,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.f(x+1)=$\sqrt{f(x)-{f}^{2}(x)}+\frac{1}{2}$,且f(1)=$\frac{1}{4}$,数列{an}满足an=f2(n)-f(n),n∈N*,若其前n项和为:-$\frac{35}{16}$,则n的值为(  )
A.16B.17C.18D.19

查看答案和解析>>

同步练习册答案