精英家教网 > 高中数学 > 题目详情
若函数f(x)的定义域为[2,16],则y=f(x)+f(2x)的定义域为(  )
A、[2,16]
B、[1,8]
C、[1,16]
D、[2,8]
考点:函数的定义域及其求法
专题:函数的性质及应用
分析:根据函数的定义域的范围得不等式组,解出即可.
解答: 解:由题意得:
2≤x≤16
2≤2x≤16

解得:2≤x≤8,
故选:D.
点评:本题考查了函数的定义域问题,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

将函数y=cosx的图象上所有点向左平移
π
3
个单位,再把所得图象上各点横坐标扩大到原来的2倍,则所得到的图象的解析式为(  )
A、y=cos(
x
2
-
π
3
B、y=cos(
x
2
+
π
6
C、y=cos(
x
2
+
π
3
D、y=cos(2x+
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=4cos(
2
5
x+
6
)的最小正周期是(  )
A、5π
B、2π
C、
2
5
π
D、
5
2
π

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合M={x|2x2-2x<1},N={x|y=lg(4-x2)},则(  )
A、M∪N=M
B、(∁RM)∩N=R
C、(∁RM)∩N=∅
D、M∩N=M

查看答案和解析>>

科目:高中数学 来源: 题型:

下列等式成立的是(  )
A、sin
π
3
=
1
2
B、cos
6
=-
1
2
C、sin(-
6
)=
1
2
D、tan
3
=
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:mx-(m2+1)y=4m(m≥0)和圆C:x2+y2-8x+4y+16=0.有以下几个结论:
①直线l的倾斜角不是钝角;
②直线l必过第一、三、四象限;
③直线l能将圆C分割成弧长的比值为
1
2
的两段圆弧;
④直线l与圆C相交的最大弦长为
4
5
5

其中正确的是
 
.(写出所有正确说法的番号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=1,|
b
|=2,
a
b
的夹角为60°,
c
a
+
b
d
=
a
+2
b
的夹角为锐角,求λ的取值范围
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(θ)=
3
sinθ+cosθ,其中θ的顶点与坐标原点重合,始终与x轴非负半轴重合,终边经过点P(x,y)且0≤θ≤π.
(1)若点P的坐标为(
1
2
3
2
)
,则f(θ)的值为
 

(2)若点P(x,y)为平面区域Ω:
x+y≥1
x≤1
y≤1
内的一个动点,记f(θ)的最大值为M,最小值m,则logMm=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax2+x,x≥0
x-ax2x<0
,设关于x的不等式f(x+a)<f(x)的解集为M,若[-
1
2
1
2
]⊆M,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案