分析 以B为原点,BO为x轴,BC为y轴,过B作平面BCO的垂线为z轴,建立空间直角坐标系,利用向量法能求出面APB与面CPB所成二面角的余弦值.
解答 解:
∵PO⊥平面OABC,∴∠PBO是二面角的平面角,
∵四棱锥P一OABC中,PO=3,OA=$\sqrt{7}$,AB=BC=4,
PO⊥面OABC,PB⊥BC,且PB与平面OABC所成角为30°,
∴∠PBO=30°,PB=6,OB=3$\sqrt{3}$,PC=$\sqrt{P{B}^{2}+B{C}^{2}}$=$2\sqrt{13}$,CO=$\sqrt{52-9}$=$\sqrt{43}$,
∴BO2+BC2=CO2,∴BO⊥BC,
以B为原点,BO为x轴,BC为y轴,过B作平面BCO的垂线为z轴,建立空间直角坐标系,
A(2$\sqrt{3}$,-2,0),B(0,0,0),P(3$\sqrt{3}$,0,3),
C(0,4,0),
$\overrightarrow{PA}$=(-$\sqrt{3}$,-2,-3),$\overrightarrow{PB}$=(-3$\sqrt{3}$,0,-3),$\overrightarrow{PC}$=(-3$\sqrt{3}$,4,-3),
设平面APB的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PA}=-\sqrt{3}x-2y-3z=0}\\{\overrightarrow{n}•\overrightarrow{PB}=-3\sqrt{3}x-3z=0}\end{array}\right.$,取x=$\sqrt{3}$,得$\overrightarrow{n}$=($\sqrt{3},3,-3$),
设平面CPB的法向量$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{PB}=-3\sqrt{3}a-3c=0}\\{\overrightarrow{m}•\overrightarrow{PC}=-3\sqrt{3}a+4b-3c=0}\end{array}\right.$,取a=$\sqrt{3}$,得$\overrightarrow{m}$=($\sqrt{3}$,0,-3),
设面APB与面CPB所成二面角的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{12}{\sqrt{12}•\sqrt{21}}$=$\frac{2\sqrt{7}}{7}$.
∴面APB与面CPB所成二面角的余弦值为$\frac{2\sqrt{7}}{7}$.
点评 本题考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | AC边的中点 | B. | BC边的中点 | C. | AB边的中点 | D. | 以上都有可能 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com