精英家教网 > 高中数学 > 题目详情
12.已知f(x)=$\frac{x+1}{{e}^{x}}$(e是自然对数的底数).
(Ⅰ)求函数f(x)的极大值;
(Ⅱ)令h(x)=a+2f′(x)(a∈R),若h(x)有两个零点,x1,x2(x1<x2),求a的取值范围;
(Ⅲ)设F(x)=aex-x2,在(Ⅱ)的条件下,试证明0<F(x1)<1.

分析 (Ⅰ)求得f(x)的导数,由导数大于0,可得增区间;导数小于0,可得减区间,进而得到极大值;
(Ⅱ)求出h(x)=a-$\frac{2x}{{e}^{x}}$,令h(x)=0,可得a=$\frac{2x}{{e}^{x}}$,由题意可得x1,x2是方程a=$\frac{2x}{{e}^{x}}$的两根,设g(x)=$\frac{2x}{{e}^{x}}$,求出导数和单调区间、极值和最值,可得a的范围;
(Ⅲ)由(Ⅱ)可得,函数h(x)的两个零点满足0<x1<1<x2,由h(x1)=0aex1=2x1,求出F(x1)的解析式,可得F(x1)在(0,1)上递增,即可得证.

解答 解:(Ⅰ)f(x)=$\frac{x+1}{{e}^{x}}$的导数为f′(x)=$\frac{-x}{{e}^{x}}$,
由f′(x)>0,可得x<0;由f′(x)<0,可得x>0.
即有f(x)在(0,+∞)递减,在(-∞,0)递增.
可得f(x)在x=0处取得极大值,且为1;
(Ⅱ)h(x)=a+2f′(x)=a-$\frac{2x}{{e}^{x}}$,
令h(x)=0,可得a=$\frac{2x}{{e}^{x}}$,
若函数h(x)有两个零点x1,x2,则x1,x2是方程a=$\frac{2x}{{e}^{x}}$的两根,
设g(x)=$\frac{2x}{{e}^{x}}$,g′(x)=$\frac{2-2x}{{e}^{x}}$,
由g′(x)>0,可得x<1,由g′(x)<0,可得x>1,
可得g(x)在(-∞,1)递增,在(1,+∞)递减,
g(x)max=g(1)=$\frac{2}{e}$,
由x→+∞,g(x)→0;x→-∞,g(x)→-∞.
要使方程a=$\frac{2x}{{e}^{x}}$有两根,可得0<a<$\frac{2}{e}$,
故实数a的取值范围是(0,$\frac{2}{e}$);
(Ⅲ)证明:由(Ⅱ)可得,函数h(x)的两个零点满足0<x1<1<x2
由h(x1)=a-$\frac{2{x}_{1}}{{e}^{{x}_{1}}}$=0,即a=$\frac{2{x}_{1}}{{e}^{{x}_{1}}}$,即aex1=2x1
由F(x1)=aex1-x12=2x1-x12=-(x1-1)2+1,
显然F(x1)在(0,1)上递增,
由0<x1<1,可得0=F(0)<F(x1)<F(1)=1,
即0<F(x1)<1.

点评 本题考查导数的运用:求单调区间和极值、最值,考查函数方程的转化思想的运用,注意运用构造函数法和函数的单调性,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{x+1}{{e}^{x}}$(e是自然对数的底数),g(x)=f(x)-f′(x)e2x
(Ⅰ)若函数y=f(x)-a有两个零点,求实数a的取值范围;
(Ⅱ)若对任意x∈[-1,+∞),g(x)+b>0恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知直棱柱ABC-A1B1C1中,∠ACB=90°,AB=2,AC=2,AA1=3,求:
(1)三棱锥B1-ABC的体积;
(2)求二面角B1-AC-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知四棱锥P一OABC中,PO=3,OA=$\sqrt{7}$,AB=BC=4,PO⊥面OABC,PB⊥BC,且PB与平面OABC所成角为30°,求面APB与面CPB所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在半径为$10\sqrt{3}(m)$的半圆形(其中O为圆心)铝皮上截取一块矩形材料ABCD,其中点C、D在圆弧上,点A、B在半圆的直径上,现将此矩形铝皮ABCD卷成一个以BC为母线的圆柱形罐子的侧面(注:不计剪裁和拼接损耗),设矩形的边长BC=x(m),圆柱的侧面积为S(m2)、体积为V(m3),
(1)分别写出圆柱的侧面积S和体积V关于x的函数关系式;
(2)当x为何值时,才能使得圆柱的侧面积S最大?
(3)当x为何值时,才能使圆柱的体积V最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,四棱锥P-ABCD中,PD⊥底面ABCD,PD=DC=2AD,AD⊥DC,∠BCD=45°.
(1)设PD的中点为M,求证:AM∥平面PBC;
(2)求PA与平面PBC所成角的正弦值;
(3)设DC=a,求点D到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,四棱锥P-ABCD中,∠ABC=∠BAD=90°,△PAB,△PAD,都是边长为2的等边三角形.
(Ⅰ)证明:平面PDB⊥平面ABCD;
(Ⅱ)求点C到平面PAD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.极坐标方程ρ=cosθ(-$\frac{π}{2}$≤θ≤$\frac{π}{2}$)表示的曲线是(  )
A.B.半圆C.射线D.直线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设(x-3)2+(y-3)2=6,则$\frac{y}{x}$的最大值为3+2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案