精英家教网 > 高中数学 > 题目详情
13.圆x2+y2-2x+2y+1=0的圆心到直线x+y+1=0的距离是(  )
A.$\frac{1}{2}$B.$\frac{{3\sqrt{2}}}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{3}{2}$

分析 圆x2+y2-2x+2y+1=0即(x-1)2+(y+1)2=3的圆心(1,-1)再利用点到直线的距离公式即可得出到直线x+y+1=0的距离.

解答 解:圆x2+y2-2x+2y+1=0即(x-1)2+(y+1)2=3的圆心(1,-1)
圆心(1,-1)到直线x+y+1=0的距离=$\frac{|1-1+1|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,
故选C.

点评 本题考查圆的方程,考查点到直线的距离公式,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图,在棱长为1的正方体ABCD-A1B1C1D1中,点E是棱AB上的动点.
(Ⅰ)求证:DA1⊥ED1
(Ⅱ)若E为AB中点时,求二面角D1-EC-D的余弦值;
(Ⅲ)写出点E到直线D1C距离的最大值及此时点E的位置(结论不要求证明).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆C:x2+y2+Dx+Ey+3=0关于直线x+y-1=0对称,圆心在第二象限,半径为$\sqrt{2}$.
(1)求圆C的方程;
(2)是否存在斜率为2的直线l,l截圆C所得的弦为AB,且以AB为直径的圆过原点,若存在,则求出l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若方程x2-2x+p=0的两个根为α、β,且|α-β|=3,则实数p=$-\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若双曲线$\frac{x^2}{4}-\frac{y^2}{5}=1$与椭圆$\frac{x^2}{a^2}+\frac{y^2}{16}=1$有共同的焦点,且a>0,则a的值为(  )
A.5B.$\sqrt{7}$C.$\sqrt{15}$D.$\sqrt{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某高校“统计初步”课程的教师为了判断主修统计专业是否与性别有关,随机调查了该选修课的一些学生情况.23名男生中,有10人是统计专业;27名女生中,有20人是统计专业.
(1)根据统计数据填写下面的2×2列联表.
非统计专业统计专业总计
总计
(2)如果判断主修统计专业与性别有关,那么这种判断出错的概率最大不超过多少?
附表:
P(k2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
公式:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.y2=4x的准线方程为x=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=-x3+3x2+9x+a.
(1)当a=-10时,求f(x)在x=2处的切线方程;
(2)若f(x)在区间[-2,2]上的最大值为18,求它在该区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=$\frac{x}{2}$-sinx,$x∈(0,\frac{π}{2})$的单调递减区间是(  )
A.$(0,\frac{π}{6})$B.$(0,\frac{π}{3})$C.$(\frac{π}{6},\frac{π}{2})$D.$(\frac{π}{3},\frac{π}{2})$

查看答案和解析>>

同步练习册答案