| A. | [8,10) | B. | ($\frac{26}{3}$,10) | C. | (8,$\frac{26}{3}$) | D. | ($\frac{25}{3}$,10) |
分析 构造函数,设log2x=t,t∈(2,3),则得到y=2t+$\frac{8}{t}$=2(t+$\frac{4}{t}$),利用定义得到函数的单调性,即可求出函数的值域
解答 解:∵f(x)=log2x,x∈(4,8),
设log2x=t,t∈(2,3),
∵f(x2)=log2x2=2log2x,
∴y=2t+$\frac{8}{t}$=2(t+$\frac{4}{t}$),
设t1,t2∈(2,3),且t1<t2,
∴f(t1)-f(t2)=2[(t1+$\frac{4}{{t}_{1}}$)-(t2+$\frac{4}{{t}_{2}}$)]=2(t1-t2)$\frac{{t}_{1}{t}_{2}-4}{{t}_{1}{t}_{2}}$,
∵t1,t2∈(2,3),且t1<t2,
∴t1-t2<0,t1t2-4>0,
∴f(t1)-f(t2)<0,
∴函数y=f(t)在(2,3)上为增函数,
∴f(2)<y<f(3),
∴8<y<$\frac{26}{3}$
∴函数y=f(x2)+$\frac{8}{f(x)}$=2log2x的值域为(8,$\frac{26}{3}$),
故选C.
点评 本题主要考查函数值域的求解,利用换元法结合对数函数和函数的单调性解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1≤ab≤$\frac{{a}^{2}+{b}^{2}}{2}$ | B. | $\frac{{a}^{2}+{b}^{2}}{2}$<ab<1 | C. | ab<$\frac{{a}^{2}+{b}^{2}}{2}$<1 | D. | 1<ab<$\frac{{a}^{2}+{b}^{2}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 0 | C. | 3 | D. | -3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com