精英家教网 > 高中数学 > 题目详情
8.若i为虚数单位,则复数$\frac{1+i}{3-i}$等于(  )
A.$\frac{1}{2}+\frac{1}{2}i$B.$\frac{1}{4}+\frac{1}{2}i$C.$\frac{2}{5}+\frac{2}{5}i$D.$\frac{1}{5}+\frac{2}{5}i$

分析 利用复数的运算法则即可得出.

解答 解:复数$\frac{1+i}{3-i}$=$\frac{(1+i)(3+i)}{(3-i)(3+i)}$=$\frac{2+4i}{10}$=$\frac{1}{5}+\frac{2}{5}$i.
故选:D.

点评 本题考查了复数的运算法则,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.齐王与田忌赛马,每人各有三匹马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,共进行三场比赛,每次各派一匹马进行比赛,马不能重复使用,三场比赛全部比完后胜利场次多者为胜,则田忌获胜的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{5}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=alnx+x2-x,其中a∈R.
(Ⅰ)若a<0,讨论f(x)的单调性;
(Ⅱ)当x≥1时,f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知命题p:?x∈R,x2-2xsinθ+1≥0;命题q:?α,β∈R,sin(α+β)≤sinα+sinβ,则下列命题中的真命题为(  )
A.(¬p)∧qB.p∧(¬q)C.(¬p)∨qD.¬(p∨q)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某工厂生产某种产品,每日的成本C(单位:万元)与日产量x(单位:吨)满足函数关系C=3+x,每日的销售S(单位:万元)与日产量x的函数关系式为S=$\left\{\begin{array}{l}{3x+5+\frac{k}{x-8},0<x<6}\\{14,x≥6}\end{array}\right.$.已知每日的利润L=S-C,且当x=2时,L=3.
(Ⅰ)求k的值;
(Ⅱ)当日产量为多少吨时,每日的利润可以达到最大,并求此最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数$f(x)=\left\{\begin{array}{l}{a^x},\;0<x≤1\;\\{log_a}x\;,x>1\end{array}\right.$(a>0且a≠1),若f(3a2)>f(1-2a),则a的取值范围是(  )
A.$0<a<\frac{1}{2}$B.$\frac{1}{3}<a<\frac{1}{2}$C.$0<a<\frac{1}{3}$D.a>1或$0<a<\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设数列{an}的前n项和为Sn,若$\frac{1}{2}≤\frac{{{a_{n+1}}}}{a_n}≤2$(n∈N*),则称{an}是“紧密数列”;
(1)若a1=1,${a_2}=\frac{3}{2}$,a3=x,a4=4,求x的取值范围;
(2)若{an}为等差数列,首项a1,公差d,且0<d≤a1,判断{an}是否为“紧密数列”;
(3)设数列{an}是公比为q的等比数列,若数列{an}与{Sn}都是“紧密数列”,求q的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.二项式${(\frac{2}{x}+x)^4}$的展开式中常数项为24.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=x2+m与函数$g(x)=-ln\frac{1}{x}-3x$$(x∈[\frac{1}{2},2])$的图象上至少存在一对关于x轴对称的点,则实数m的取值范围是(  )
A.$[\frac{5}{4}+ln2,2]$B.$[2-ln2,\frac{5}{4}+ln2]$C.$[\frac{5}{4}+ln2,2+ln2]$D.[2-ln2,2]

查看答案和解析>>

同步练习册答案