精英家教网 > 高中数学 > 题目详情
18.齐王与田忌赛马,每人各有三匹马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,共进行三场比赛,每次各派一匹马进行比赛,马不能重复使用,三场比赛全部比完后胜利场次多者为胜,则田忌获胜的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{5}$D.$\frac{1}{6}$

分析 由题意知基本事件总数n=${A}_{3}^{3}$=6,再由列举法求出田忌获胜包含的基本事件个数,由此能出田忌获胜的概率.

解答 解:由题意知基本事件总数n=${A}_{3}^{3}$=6,
田忌获胜包含的基本事件为:
田忌的下等马对阵齐王的上等马,田忌的上等马对阵齐王的中等马,田忌的中等马对阵齐王的下等马,
∴田忌获胜的概率p=$\frac{1}{6}$.
故选:D.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知$\frac{1+sin2θ+cos2θ}{1+sin2θ-cos2θ}$=$\frac{3}{5}$,则tanθ=$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.一个袋中有10个大小相同的黑球、白球和红球,已知从袋中任意摸出2个球,至少得到一个白球的概率是$\frac{7}{9}$.
(1)求白球的个数;
(2)求从袋中任意摸出3个球,至多有一个白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,点A(c,b),右焦点F(c,0),椭圆上存在一点M,使得$\overrightarrow{OM}•\overrightarrow{OA}=\overrightarrow{OF}•\overrightarrow{OA}$,且$\overrightarrow{OM}+\overrightarrow{OF}=t\overrightarrow{OA}({t∈R})$,则该椭圆的离心率为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)的定义域是R,f(0)=2,对任意x∈R,f′(x)>f(x)+1,则下列正确的为(  )
A.(f(1)+1)•e>f(2)+1B.3e<f(2)+1
C.3•e≥f(1)+1D.3e2与f(2)+1大小不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,O为其内部一点,且满足$\overrightarrow{OA}+\overrightarrow{OC}+3\overrightarrow{OB}=\vec 0$,则△AOB和△AOC的面积比是(  )
A.3:4B.3:2C.1:1D.1:3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设实数x,y满足$\left\{\begin{array}{l}x-y+1≥0\\ y+1≥0\\ x+y+1≤0\end{array}\right.$,则2x-y的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.一个几何体的三视图如图所示,则这个几何体的体积为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若i为虚数单位,则复数$\frac{1+i}{3-i}$等于(  )
A.$\frac{1}{2}+\frac{1}{2}i$B.$\frac{1}{4}+\frac{1}{2}i$C.$\frac{2}{5}+\frac{2}{5}i$D.$\frac{1}{5}+\frac{2}{5}i$

查看答案和解析>>

同步练习册答案