精英家教网 > 高中数学 > 题目详情
19.在△ABC中,已知tanA,tanB是关于x的方程x2+(x+1)p+1=0的两个实根.则实数p的取值集合为(  )
A.(-∞,2-2$\sqrt{2}$]∪[2+2$\sqrt{2}$,+∞)B.(-2,2-2$\sqrt{2}$)C.[2-2$\sqrt{2}$,2+2$\sqrt{2}$]D.(-1,2-2$\sqrt{2}$)

分析 由题意利用韦达定理、两角和的正切公式求得tan(A+B)的值,可得tanA∈(0,1),tanB∈(0,1),即方程x2+mx+m+1=0的两个实根均在(0,1)内,再由-p=$\frac{{x}^{2}+1}{x+1}$=(x+1)+$\frac{2}{x+1}$-2,[x∈(0,1)],求得p的范围.

解答 解:依题意有,tanA+tanB=-p,tanAtanB=p+1,
∴tan(A+B)=$\frac{tanA+tanB}{1-tanAtanB}$=$\frac{-p}{1-(p+1)}$=1,
∵0<A+B<π,∴A+B=$\frac{π}{4}$,从而0<A<$\frac{π}{4}$,0<B<$\frac{π}{4}$,
故tanA∈(0,1),tanB∈(0,1),
即方程x2+mx+m+1=0的两个实根均在(0,1)内,
则由x2+px+p+1=0,可得-p(x+1)=x2+1,
即-p=$\frac{{x}^{2}+1}{x+1}$=$\frac{{(x+1)}^{2}-2(x+1)+2}{x+1}$=(x+1)+$\frac{2}{x+1}$-2,[x∈(0,1)];
故所求p的范围是(-1,2-2 $\sqrt{2}$],
故选:D.

点评 本题考查的知识点是函数的零点,韦达定理(一元二次方程根与系数关系),两角和的正切公式,其中利用韦达定理及两角和的正切公式,确定方程两个根的范围是解答的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.一辆家庭轿车在x年的使用过程中需要如下支出:购买时花费12万元;保险费,养路费,燃油费等各种费用每年1.05万元,维修费用共0.05x2+0.15x万元;使用x年后,轿车的价值为(10.75-0.8x)万元.设这辆家庭轿车的年平均支出为y万元,则由以上条件,解答以下问题:
(1)写出y关于的函数关系式;
(2)试确定一辆家庭轿车使用多少年时年平均支出最低.并求出这个最低支出.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lnx-ax+1,a是常数,a∈R.
(Ⅰ)求曲线y=f(x)在点-处的切线P(1,f(1))的方程;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)证明:函数f(x)(x≠1)的图象在直线l的下方.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=2sin(ωx+$\frac{π}{6}$)(ω>0),x∈R,又f(x1)=-2,f(x2)=0,则|x1-x2|的最小值为$\frac{π}{2ω}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.否定“自然数a,b,c中至少有一个是偶数”时,正确的反设是(  )
A.a,b,c都是偶数B.a,b,c至多有一个是偶数
C.a,b,c至少有一个是奇数D.a,b,c都是奇数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知i为虚数单位,复数Z=$\frac{1+2i}{1-i}$,则$\overline{Z}$=$-\frac{1}{2}-\frac{3}{2}i$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图所示的程序框图中,若x=5,则输出i的值是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,$c=\sqrt{2}$,acosC=csinA,若当a=x0时的△ABC有两解,则x0的取值范围是(  )
A.$(1,\sqrt{2})$B.$(1,\sqrt{3})$C.$(\sqrt{3},2)$D.$(\sqrt{2},2)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知cos(x+$\frac{π}{4}$)=$\frac{3}{5}$,$\frac{17π}{12}$<x<$\frac{7π}{4}$,则$\frac{sin2x+2si{n}^{2}x}{1-tanx}$=-$\frac{28}{75}$.

查看答案和解析>>

同步练习册答案