精英家教网 > 高中数学 > 题目详情
11.长方体的三条棱长为3,4,5且它的八个顶点都在同一个球面上,求该球的表面积.

分析 通过题意可得$\frac{\sqrt{{3}^{2}+{4}^{2}+{5}^{2}}}{2}$即为球的半径,利用球的表面积公式计算即可.

解答 解:根据题意可得该球的半径r=$\frac{\sqrt{{3}^{2}+{4}^{2}+{5}^{2}}}{2}$=$\frac{5\sqrt{2}}{2}$,
∴该球的表面积为:4πr2=4π•$(\frac{5\sqrt{2}}{2})^{2}$=50π.

点评 本题考查求球的表面积,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2-4|x|+3.
(1)试证明函数f(x)是偶函数;
(2)画出f(x)的图象;(要求先用铅笔画出草图,再用中性笔描摹)
(3)请根据图象指出函数f(x)的单调递增区间与单调递减区间;(不必证明)
(4)当实数k取不同的值时,讨论关于x的方程x2-4|x|+3=k的实根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数f1(x)=x2,f2(x)=2(x-x2),ai=$\frac{i}{99}$,i=0,1,2,…,99,记Sk=|fk(a1)-fk(a0)|+|fk(a2)-fk(a1)|+…+|fk(a99)-fk(a98)|,k=1,2,则下列结论正确的是(  )
A.S1=1<S2B.S1=1>S2C.S1>1>S2D.S1<1<S2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.直线l1:ρsin(θ+α)=a和l2:θ=$\frac{π}{2}$-α的位置关系是(  )
A.l1∥l2B.l1⊥l2C.l1和l2重合D.l1,l2斜交

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点(0,$\sqrt{2}$),离心率为$\frac{\sqrt{3}}{3}$,过椭圆的右边焦点F作互相垂直的两条直线分别交椭圆于A、B和C、D,且M、N分别为AB、CD的中点.
(1)求椭圆的方程;
(2)证明:直线MN过定点,并求出这个定点;
(3)当AB、CD的斜率存在时,求△FMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),A(2,0)是长轴的一个端点,弦BC过椭圆的中心O,且$\overrightarrow{AC}$$•\overrightarrow{BC}$=0,|$\overrightarrow{OC}-\overrightarrow{OB}|$=2|$\overrightarrow{BC}-\overrightarrow{BA}$|.
(Ⅰ)求椭圆的方程;
(Ⅱ)设P、Q为椭圆上异于A,B且不重合的两点,且∠PCQ的平分线总是垂直于x轴,是否存在实数λ,使得$\overrightarrow{PQ}$=λ$\overrightarrow{AB}$,若存在,请求出λ的最大值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知中心在原点,焦点在坐标轴上的椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点P($\sqrt{3}$,$\frac{\sqrt{3}}{2}$),离心率为$\frac{1}{2}$,
(1)求椭圆E的方程;
(2)设直线l过椭圆E的右焦点F,且交椭圆E于A、B两点,是否存在实数λ,使得|AF|+|BF|=λ|AF|•|BF|恒成立?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知k是整数,∠A、∠B、∠C为钝角△ABC的三个内角,且其对边分别为a、b、c.
(1)若方程x2-2kx+3k2-7k+3=0有实根,求k的值;
(2)对于(1)中的k的值,若sinC=$\frac{k}{\sqrt{2}}$,且有关系式(c-b)sin2A+bsin2B=csin2C,试求∠A、∠B、∠C的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.7位同学合照,下列各种情况下分别有多少种不同的照片?
(1)站成一排;
(2)站成两排,前排3人,后排4人;
(3)甲必须站在中间;
(4)甲乙两人之间正好间隔两人.

查看答案和解析>>

同步练习册答案