精英家教网 > 高中数学 > 题目详情
10.已知数列{an}的前n项和为Sn,且Sn=n-5an+23,n∈N*,则数列{an}的通项公式是an=1+$3×(\frac{5}{6})^{n-1}$.

分析 由Sn=n-5an+23,n∈N*,可得n=1时,a1=1+23-5a1,解得a1.n≥2时,an=Sn-Sn-1,变形为:an-1=$\frac{5}{6}$(an-1-1),再利用等比数列的通项公式即可得出.

解答 解:∵Sn=n-5an+23,n∈N*,∴n=1时,a1=1+23-5a1,解得a1=4.
n≥2时,an=Sn-Sn-1=n-5an+23-[(n-1)-5an-1+23]=1-5an+5an-1
变形为:an-1=$\frac{5}{6}$(an-1-1),
∴数列{an-1}是等比数列,首项为3,公比为$\frac{5}{6}$,
∴an-1=$3×(\frac{5}{6})^{n-1}$,即an=1+$3×(\frac{5}{6})^{n-1}$,
故答案为:1+$3×(\frac{5}{6})^{n-1}$.

点评 本题考查了数列递推关系、等比数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.下列函数中,最小值为2的(  )
A.y=x+$\frac{1}{x}$B.y=$\sqrt{{x}^{2}+5}$+$\frac{1}{\sqrt{{x}^{2}+5}}$
C.y=$\frac{sinx}{2}$+$\frac{2}{sinx}$(0<x<π)D.y=logab+logba(a>1,b>1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(文)已知指数函数y=f(x)的图象过点(2,4),若f(m)=16,则m=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x+6(x≤0)}\\{-x+6(x>0)}\end{array}\right.$,则不等式f(x)<f(-1)的解集是(  )
A.(-3,-1)∪(3,+∞)B.(-3,-1)∪(2,+∞)C.(-3,+∞)D.(-∞,-3)(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,在平行六面体ABCD-A1B1C1D1中,AA1=AB=AD=$\sqrt{3}$,若∠A1AD=∠A1AB=45°,∠BAD=60°,则点A1到平面ABCD的距离为(  )
A.1B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C的中心在原点,焦点在x轴上,离心率等于$\frac{2\sqrt{5}}{5}$,它的一个顶点恰好是抛物线y=$\frac{1}{4}$x2的焦点,
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,若$\overrightarrow{MA}$=λ1$\overrightarrow{AF}$,$\overrightarrow{MB}$=λ2$\overrightarrow{BF}$,求证:λ12为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知复数z满足$\frac{1+i}{1-i}$•z=3+4i,则|z|=(  )
A.2$\sqrt{6}$B.$\sqrt{7}$C.5$\sqrt{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.i是虚数单位,$\frac{5i}{2-i}$的虚部为(  )
A.2B.-2C.2iD.-2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x)
(2)已知函数f(x)的定义域为(0,+∞),且$f(x)=2f(\frac{1}{x})-x$,求f(x)

查看答案和解析>>

同步练习册答案