精英家教网 > 高中数学 > 题目详情
16.(1)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x)
(2)已知函数f(x)的定义域为(0,+∞),且$f(x)=2f(\frac{1}{x})-x$,求f(x)

分析 (1)设出一次函数解析式f(x)=ax+b,由题意得到关于a,b的方程组求得a,b的值,则答案可求;
(2)在已知等式当中,以$\frac{1}{x}$替换x,联立方程组求得答案.

解答 解:(1)设f(x)=ax+b(a≠0),
则由3f(x+1)-2f(x-1)=2x+17,得
3[a(x+1)+b]-2[a(x-1)+b]=2x+17,
即(a-2)x+5a+b-17=0,则$\left\{\begin{array}{l}{a-2=0}\\{5a+b-17=0}\end{array}\right.$,解得a=2,b=7.
∴f(x)=2x+7;
(2)由$f(x)=2f(\frac{1}{x})-x$,①
得f($\frac{1}{x}$)=2f(x)-$\frac{1}{x}$,②
把②代入①得:f(x)=$\frac{2}{3x}+\frac{x}{3}$,(x>0).

点评 本题考查函数解析式的求解及常用方法,训练了利用待定系数法求函数解析式,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知数列{an}的前n项和为Sn,且Sn=n-5an+23,n∈N*,则数列{an}的通项公式是an=1+$3×(\frac{5}{6})^{n-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,已知正方形ABCD的边长为2,E,F分别为BC,CD的中点.
求:(1)$\overrightarrow{AE}•\overrightarrow{AF}$的值;
(2)$\overrightarrow{AE}$与$\overrightarrow{AF}$夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设f(x)=|x-a|,(a∈R).
(Ⅰ)当-2≤x≤3时,f(x)≤4成立,求实数a的取值范围;
(Ⅱ)若存在实数x,使得f(x-a)-f(x+a)≤2a-1成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若f(cosx)=sin3x,则f(sin30°)=(  )
A.-1B.0C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知点P(2,0),点N到原点O与到点M(3,0)的距离之比为$\frac{1}{2}$,点N的轨迹为曲线C.
(1)求过点P且与曲线C相切的直线的方程;
(2)若过原点O的直线l与曲线C相交于不同的两点A,B,求△PAB面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知圆O:x2+y2=13,经过圆O上任P一点作y轴的垂线,垂足为Q,求线段PQ的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知等差数列{an}的前n项和为Sn,若S1、a3、S3成等差数列,且a2+a3+a4=15,若Sn-1600≥0,则n的最小值为40.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知数列{an}是公比大于1的等比数列,a6•a12=6,a4+a14=5,则$\frac{{{a}_{20}}}{{{a}_{10}}}$等于(  )
A.$\frac{2}{3}$B.$\frac{3}{2}$C.$\frac{3}{2}$或$\frac{2}{3}$D.-$\frac{2}{3}$或-$\frac{3}{2}$

查看答案和解析>>

同步练习册答案