精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 的左、右焦点分别为离心率 为椭圆上的任意一点(不含长轴端点),且面积的最大值为1.

1)求椭圆的方程;

2)已知直线与椭圆交于不同的两点且线段的中点不在圆内,求的取值范围.

【答案】(1) (2)

【解析】试题分析:

1)要求椭圆方程,一般要找到两个关于的方程,题中离心率是一个,即 面积最大时P点是椭圆短轴端点,因此有,这样可解出得椭圆方程;

2把直线方程与椭圆方程联立方程组,消元后为一元二次方程,设交点,利用韦达定理可得中点坐标(用表示),注意直线与椭圆相交有限制条件,由中点在圆内又得一条件,从而可解得的范围.

试题解析:

(Ⅰ)由题可知,又a2=b2+c2

,故------3

所以椭圆的标准方程为

II)联立方程消去y 整理得:

,解得…..8

,则

AB的中点为

AB的中点不在园内,所以,解得

综上可知,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知A,B,C为锐角△ABC的三个内角,向量 =(2﹣2sinA,cosA+sinA), =(1+sinA,cosA﹣sinA),且
(1)求A的大小;
(2)求y=2sin2B+cos( ﹣2B)取最大值时角B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的公差为d,前n项和为Sn , 等比数列{bn}的公比为q,已知b1=a1 , b2=2,q=d,S10=100.
(1)求数列{an},{bn}的通项公式
(2)当d>1时,记cn= ,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知λ∈R,函数 g(x)=x2﹣4x+1+4λ,若关于x的方程f(g(x))=λ有6个解,则λ的取值范围为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: 的右焦点为F(1,0),且点(﹣1, )在椭圆C上.
(1)求椭圆C的标准方程;
(2)已知动直线l过点F,且与椭圆C交于A,B两点,试问x轴上是否存在定点Q,使得 恒成立?若存在,求出点Q的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱台 平面 分别为的中点.

1求证: 平面

2求平面与平面所成角(锐角)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合.

1)若的概率;

(2)若的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列 中,公差 , ,且 成等比数列.
(1)求数列 的通项公式;
(2)若 为数列 的前 项和,且存在 ,使得 成立,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数上的奇函数,求实数a的值;

(2)函数为减函数,求实数a的取值范围;

(3)是否存在实数(),使得 在闭区间上的最大值为2,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案