20£®ÒÑÖª£º¡ÏABCΪֱ½ÇÈý½ÇÐΣ¬¡ÏA=90¡ã£¬¡ÏA¡¢¡ÏB¡¢¡ÏCËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬AD¡ÍBC£¬ÈôÑØAB¼°AC·½ÏòµÄÁ½¸öÁ¦$\overline{AP}$£¬$\overline{AQ}$µÄ´óС·Ö±ðΪ$\frac{1}{c}$£¬$\frac{1}{b}$£®
¢ÙÊÔÇó$\overline{AP}$+$\overline{AQ}$µÄ´óС            
¢ÚÇóÖ¤£º$\overline{AP}$+$\overline{AQ}$µÄ·½ÏòÓë$\overline{AD}$µÄ·½ÏòÏàͬ£®

·ÖÎö ¢Ù°ÑÏòÁ¿$\overline{AP}$£¬$\overline{AQ}$·Ö±ðÓÃÈý½ÇÐεı߳¤¼°$\overrightarrow{AB}¡¢\overrightarrow{AC}$±íʾ£¬Çó³ö$£¨\overrightarrow{AP}+\overrightarrow{AQ}£©^{2}$£¬Ôò$\overline{AP}$+$\overline{AQ}$µÄ´óС¿ÉÇó£»
¢ÚÓÉÒÑÖª¿ÉµÃ$\overrightarrow{AD}•\overrightarrow{BC}=0$£¬È»ºóÖ¤Ã÷£¨$\overline{AP}$+$\overline{AQ}$£©•$\overrightarrow{BC}$=0µÃ´ð°¸£®

½â´ð ¢Ù½â£ºÓÉÌâÒâ¿ÉµÃ£º$\overrightarrow{AP}=\frac{\overrightarrow{AB}}{{c}^{2}}£¬\overrightarrow{AQ}=\frac{\overrightarrow{AC}}{{b}^{2}}$£¬
¡à$£¨\overrightarrow{AP}+\overrightarrow{AQ}£©^{2}=£¨\frac{\overrightarrow{AB}}{{c}^{2}}+\frac{\overrightarrow{AC}}{{b}^{2}}£©^{2}$=$\frac{|\overrightarrow{AB}{|}^{2}}{{c}^{4}}+2\frac{1}{{c}^{2}{b}^{2}}\overrightarrow{AB}•\overrightarrow{AC}+\frac{|\overrightarrow{AC}{|}^{2}}{{b}^{4}}$
=$\frac{1}{{c}^{2}}+\frac{1}{{b}^{2}}=\frac{{a}^{2}}{{c}^{2}+{b}^{2}}$£®
¡à$|\overrightarrow{AP}+\overrightarrow{AQ}|=\sqrt{\frac{{a}^{2}}{{c}^{2}+{b}^{2}}}=\frac{a}{{c}^{2}+{b}^{2}}\sqrt{{c}^{2}+{b}^{2}}$£»
¢ÚÖ¤Ã÷£º¡ßAD¡ÍBC£¬¡à$\overrightarrow{AD}•\overrightarrow{BC}=0$£®
ÓÖ£¨$\overline{AP}$+$\overline{AQ}$£©•$\overrightarrow{BC}$=£¨$\frac{\overrightarrow{AB}}{{c}^{2}}+\frac{\overrightarrow{AC}}{{b}^{2}}$£©•£¨$\overrightarrow{AC}-\overrightarrow{AB}$£©
=$\frac{\overrightarrow{AB}•\overrightarrow{AC}}{{c}^{2}}-\frac{|\overrightarrow{AB}{|}^{2}}{{c}^{2}}+\frac{|\overrightarrow{AC}{|}^{2}}{{b}^{2}}-\frac{\overrightarrow{AC}•\overrightarrow{AB}}{{b}^{2}}$
=$-\frac{{c}^{2}}{{c}^{2}}+\frac{{b}^{2}}{{b}^{2}}=0$£®
¡à$\overline{AP}$+$\overline{AQ}$µÄ·½ÏòÓë$\overline{AD}$µÄ·½ÏòÏàͬ£®

µãÆÀ ±¾Ì⿼²éÏòÁ¿¼¸ºÎºÏÖеÄÓ¦Ó㬿¼²éÁËÏòÁ¿·½ÏòÉϵĵ¥Î»ÏòÁ¿£¬¿¼²éÏòÁ¿¼Ó·¨¡¢¼õ·¨µÄÈý½ÇÐη¨Ôò£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖª$-\frac{¦Ð}{4}$ºÍ$\frac{¦Ð}{4}$ÊǺ¯Êýf£¨x£©=sin£¨¦Øx+¦Õ£©£¨¦Ø£¾0£¬0£¼¦Õ£¼¦Ð£©µÄÏàÁÚµÄÁ½¸öÁãµã£®
£¨¢ñ£©Çóf£¨x£©µÄ½âÎöʽ£»
£¨¢ò£©ÔÚ¡÷ABCÖУ¬ÈôsinBsinCcosA=sin2A£¬Çóº¯Êýf£¨A£©µÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÉèµÈ±ÈÊýÁÐ{an}µÄ¹«±ÈΪq£¬Èôa5=4£¬a8=32£¬
£¨¢ñ£©Çó{an}µÄͨÏʽ£»
£¨¢ò£©ÈôÊýÁÐ{bn}Âú×ãbn=log2an£¬ÊýÁÐ{bn}µÄǰnÏîºÍΪSn£¬ÊýÁÐ{$\frac{{S}_{n}}{{n}^{2}}$}µÄǰnÏîºÍΪTn£®ÇóÖ¤£ºTn¡Ü$\frac{n}{2}$-$\frac{5}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®¹ýµãA£¨-2£¬3£©£¬B£¨-2£¬-5£©£¬ÇÒÔ²ÐÄÔÚÖ±Ïßx-2y-3=0ÉϵÄÔ²µÄ±ê×¼·½³ÌÊÇ£¨x-1£©2+£¨y+1£©2=25£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªÇúÏßCÉϵĵ㵽¶¨µãF£¨0£¬$\frac{P}{2}$£©£¨p£¾0£©Óëµ½¶¨Ö±Ïßy=-$\frac{P}{2}$µÄ¾àÀëÏàµÈ£¬AÊÇÇúÏßCÉϵÚÒ»ÏóÏÞÄڵĵ㣬ÔÚµãA´¦µÄÇÐÏßl1Óëx¡¢yÖá·Ö±ð½»ÓÚD¡¢QÁ½µã£¬ÇÒ|FD|=2£¬¡ÏAFD=60¡ã£®
£¨1£©ÇóÇúÏßCµÄ·½³Ì£»
£¨2£©Çó¡ÏFADµÄ½Çƽ·ÖÏßËùÔÚµÄÖ±Ïß·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Èý½ÇÐÎABCÖУ¬A+C=2B£¬tanAtanC=2+$\sqrt{3}$£¬ÔòA=45¡ã»ò75¡ã£¬B=60¡ã£¬C=75¡ã»ò45¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖª¦ÈΪÈñ½Ç£¬sin2¦È=-$\frac{7}{9}$£¬Ôòsin£¨$\frac{¦Ð}{4}$+¦È£©=£¨¡¡¡¡£©
A£®$¡À\frac{1}{3}$B£®$\frac{1}{3}$C£®-$\frac{1}{3}$D£®¡À$\frac{\sqrt{2}}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®¼ºÖªÊýÁÐ{log2£¨an-1£©}ΪµÈ²îÊýÁУ¬ÇÒa1=3£¬a2=5£®
£¨1£©ÇóÖ¤£ºÊýÁÐ{an-1}ÊǵȱÈÊýÁУ»
£¨2£©Çó$\frac{1}{{a}_{2}-{a}_{1}}$+$\frac{1}{{a}_{3}-{a}_{2}}$+¡­+$\frac{1}{{a}_{n+1}-{a}_{n}}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÈçͼËÄÀâ×¶P-ABCDÖУ¬PB=PC£¬µ×ÃæABCDÊÇÖ±½ÇÌÝÐΣ¬AB¡ÎDC£¬¡ÏABC=60¡ã£¬DC=1£¬AD=$\sqrt{3}$£®
£¨1£©ÇóÖ¤£ºAB¡ÎÆ½ÃæPCD£»
£¨2£©ÇóÖ¤£ºPA¡ÍBC£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸