精英家教网 > 高中数学 > 题目详情
12.已知θ为锐角,sin2θ=-$\frac{7}{9}$,则sin($\frac{π}{4}$+θ)=(  )
A.$±\frac{1}{3}$B.$\frac{1}{3}$C.-$\frac{1}{3}$D.±$\frac{\sqrt{2}}{3}$

分析 二倍角公式、两角和的正弦函数把要求的式子化简,运算求得结果.

解答 解:θ为锐角,则$\frac{π}{4}$+θ∈($\frac{π}{4},\frac{3π}{4}$).
sin($\frac{π}{4}$+θ)=$\frac{\sqrt{2}}{2}$(sinθ+cosθ).
sin($\frac{π}{4}$+θ)=$\sqrt{(\frac{\sqrt{2}}{2}(sinθ+cosθ))^{2}}$=$\sqrt{\frac{1}{2}(1+sin2θ)}$=$\sqrt{\frac{1}{2}(1-\frac{7}{9})}$=$\frac{1}{3}$.
故选:B.

点评 本题主要考查二倍角公式、两角和的正弦函数的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=Asin(ωx+φ)+b(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)若f(α)=1+$\sqrt{3}$,且α∈[0,$\frac{π}{2}$],求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an}的通项公式为an=n•pn(p>0),如果数列{an}是递增数列,则实数p的取值范围是p>$\frac{n}{n+1}$;如果存在m∈N*,对任意n∈N*有an≤am成立,则实数p的取值范围是$\frac{m-1}{m}$≤p≤$\frac{m}{m+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知:∠ABC为直角三角形,∠A=90°,∠A、∠B、∠C所对的边分别为a,b,c,AD⊥BC,若沿AB及AC方向的两个力$\overline{AP}$,$\overline{AQ}$的大小分别为$\frac{1}{c}$,$\frac{1}{b}$.
①试求$\overline{AP}$+$\overline{AQ}$的大小            
②求证:$\overline{AP}$+$\overline{AQ}$的方向与$\overline{AD}$的方向相同.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.画出方程x4-x2=y4-y2的曲线C,并回答下列问题:
(1)若点A(m,$\sqrt{2}$)在曲线C上,求m的值;
(2)若直线y=a(a∈R)与曲线C分别有一个、两个、三个、四个交点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.△ABC的一边长为8,周长为20,求顶点A的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.焦点在x轴上的椭圆$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>0)的焦距为4$\sqrt{2}$,则长轴长是6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知P是椭圆$\frac{{x}^{2}}{100}$+$\frac{{y}^{2}}{64}$=1上一点,左、右焦点分别是F1,F2,若∠F1PF2=60°,则△PF1F2的面积为$\frac{64\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=log2(1+a•2x+4x),其中a为常数
(1)当f(2)=f(1)+2,求a的值;
(2)当x∈[1,+∞)时,关于x的不等式f(x)≥x-1恒成立,试求a的取值范围.

查看答案和解析>>

同步练习册答案