精英家教网 > 高中数学 > 题目详情
8.过点A(-2,3),B(-2,-5),且圆心在直线x-2y-3=0上的圆的标准方程是(x-1)2+(y+1)2=25.

分析 要求圆的方程,就要求出圆心和半径.先求圆心:利用中点坐标公式求出AB的中点,求出垂直平分线的斜率,写出垂直平分线的方程,根据圆的性质可知圆心一定在弦AB的垂直平分线上,与直线x-2y-3=0联立求出圆心坐标,再求半径:根据两点间的距离公式求出圆心与A的距离即为圆的半径,利用圆心和半径写出圆的标准方程即可.

解答 解:由点A(-2,3),B(-2,-5),中点坐标公式求出AB的中点坐标为(-2,-1),AB的垂直的直线的斜率为0,
所以AB的垂直平分线是y=-1,
因为圆心是两直线的交点,联立得$\left\{\begin{array}{l}y=-1\\ x-2y-3=0\end{array}\right.$,
解得$\left\{\begin{array}{l}x=1\\ y=-1\end{array}\right.$,所以圆心坐标O为(1,-1);
所以AO的长度等于圆的半径,则半径r2=(-2-1)2+(3+1)2=25,
所以圆的方程为(x-1)2+(y+1)2=25
故答案为:(x-1)2+(y+1)2=25.

点评 考查学生灵活运用圆的性质解决实际问题,要求学生会利用两个点求中点坐标和所在直线的斜率,掌握两直线垂直时斜率满足的条件,会根据圆心和半径写出圆的标准方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.下列四个命题中正确命题的个数是(  )
(1)若A,B为互斥事件,则P(A)+P(B)=1
(2)若A,B为互斥事件,则P(A)+P(B)≤1
(3)互斥事件不一定是对立事件,对立事件一定是互斥事件
(4)一人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是“两次都不中靶”
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设不等式组 $\left\{\begin{array}{l}{x-2y+2≥0}\\{3x-2y-3≤0}\\{x+y-1≥0}\end{array}\right.$,表示的平面区域为D,P(x,y)∈D,若x2+y2≥m恒成立,则实数m的最大值为(  )
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{4}{5}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.不等式4x2+4bx+1≤0的解集为∅,则(  )
A.b<1B.b>-1或b<1C.-1<b<1D.b>1或b<-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an}的通项公式为an=n•pn(p>0),如果数列{an}是递增数列,则实数p的取值范围是p>$\frac{n}{n+1}$;如果存在m∈N*,对任意n∈N*有an≤am成立,则实数p的取值范围是$\frac{m-1}{m}$≤p≤$\frac{m}{m+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.cos35°cos70°-sin35°cos20°等于(  )
A.$\frac{\sqrt{6}+\sqrt{2}}{4}$B.-$\frac{\sqrt{6}+\sqrt{2}}{4}$C.$\frac{\sqrt{6}-\sqrt{2}}{4}$D.$\frac{\sqrt{2}-\sqrt{6}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知:∠ABC为直角三角形,∠A=90°,∠A、∠B、∠C所对的边分别为a,b,c,AD⊥BC,若沿AB及AC方向的两个力$\overline{AP}$,$\overline{AQ}$的大小分别为$\frac{1}{c}$,$\frac{1}{b}$.
①试求$\overline{AP}$+$\overline{AQ}$的大小            
②求证:$\overline{AP}$+$\overline{AQ}$的方向与$\overline{AD}$的方向相同.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.△ABC的一边长为8,周长为20,求顶点A的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知E,F,G,H分别是四边形ABCD四条边AB,CD,AD,BC的中点,求$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{AD}$+$\overrightarrow{DC}$=2($\overrightarrow{EF}$+$\overrightarrow{GH}$)

查看答案和解析>>

同步练习册答案