精英家教网 > 高中数学 > 题目详情
2.已知函数g(x)=$\frac{1}{2}sin2x-\frac{{\sqrt{3}}}{2}$cos2x+1,x∈R,函数f(x)与函数g(x)的图象关于原点对称.
(1)求y=f(x)的解析式;
(2)当$x∈[-\frac{π}{4},\frac{π}{2}]$时,求函数f(x)的取值范围.

分析 (1)利用辅助角公式将函数g(x)进行化简,结合函数的对称轴即可求y=f(x)的解析式;
(2)当$x∈[-\frac{π}{4},\frac{π}{2}]$时,结合三角函数的单调性即可求函数f(x)的取值范围.

解答 解:(1)设点(x,y)是函数y=f(x)的图象上任意一点,
由题意可知,点(-x,-y)在y=g(x)的图象上,
于是有$-y=\frac{1}{2}sin(-2x)-\frac{{\sqrt{3}}}{2}cos(-2x)+1,x∈R$.
所以,$f(x)=\frac{1}{2}sin2x+\frac{{\sqrt{3}}}{2}cos2x-1$,x∈R.
(2)由(1)可知,$f(x)=\frac{1}{2}sin2x+\frac{{\sqrt{3}}}{2}cos2x-1=sin(2x+\frac{π}{3})-1$.
又$x∈[-\frac{π}{4},\frac{π}{2}]$,
所以,$-\frac{π}{6}≤2x+\frac{π}{3}≤\frac{4}{3}π$.
考察正弦函数y=sinx的图象,可知,$-\frac{{\sqrt{3}}}{2}≤sin(2x+\frac{π}{3})≤1$,$x∈[-\frac{π}{4},\frac{π}{2}]$.
于是,$-\frac{{\sqrt{3}}}{2}-1≤sin(2x+\frac{π}{3})-1≤0$.
所以,当$x∈[-\frac{π}{4},\frac{π}{2}]$时,函数f(x)的取值范围是$-\frac{{2+\sqrt{3}}}{2}≤f(x)≤0$.

点评 本题主要考查三角函数解析式的求解,以及三角函数最值的求解,求出角的范围结合三角函数的单调性是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.设f(x)是定义在R上的函数,对x∈R都有f(-x)=f(x),周期为4,当x∈[-2,0]时,f(x)=($\frac{1}{3}$)x-6,若在区间(-2,6]内关于x的f(x)-loga(x+2)=0(a>1)恰好有3个不同的实数根,则a的取值范围是(  )
A.(1,2)B.(2,+∞)C.(1,$\root{3}{4}$)D.($\root{3}{4}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列说法正确的是(  )
A.命题“?x∈R,ex>0”的否定是“?x∈R,ex>0”
B.命题“函数$y=sin(x-\frac{3π}{2})$与函数y=cosx的图象相同”是真命题
C.命题:“设随机变量X服从正态分布N(0,1),如果P(X≤1)=0.8413,则P(-1<X<0)=0.6826”的逆否命题是真命题
D.命题“若a=-1,则函数f(x)=ax2+2x-1只有一个零点”的逆命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若(1+ex)2014=a0+a1x+a2x2+…+a2014x2014(x∈R),则-$\frac{{a}_{1}}{e}+\frac{{a}_{2}}{{e}^{2}}-\frac{{a}_{3}}{{e}^{3}}$+…+$\frac{{a}_{2014}}{{e}^{2014}}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在平面直角坐标系xOy中,若直线l:x+2y=0与圆C:(x-a)2+(y-b)2=5相切,且圆心C在直线l的上方,则ab最大值为$\frac{25}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,已知2sin2$\frac{A+B}{2}$+cos2C=1,外接圆半径R=2.
(1)求角C的大小;
(2)若角A=$\frac{π}{6}$,求△ABC面积的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,四棱锥P-ABCD的底面ABCD为菱形,PD⊥平面ABCD,PD=AD=2,∠BAD=60°,E、E分别为BC、PA的中点.
(1)求证:ED⊥平面PAD;
(2)求三棱锥P-DEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.某学生参加3门课程的考试.假设该学生第一门、第二门及第三门课程取得合格水平的概率依次为$\frac{4}{5}$,$\frac{3}{5}$,$\frac{2}{5}$,且不同课程是否取得合格水平相互独立.则该生只取得一门课程合格的概率为$\frac{37}{125}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知S为执行如图所示的程序框图输出的结果,则二项式(S$\sqrt{x}$-$\frac{3}{\sqrt{x}}$)6的展开式中常数项的系数是(  )
A.-20B.20C.-$\frac{20}{3}$D.60

查看答案和解析>>

同步练习册答案