| A. | (-∞,-4) | B. | [-4,0) | C. | (-4,0) | D. | (-4,+∞) |
分析 由题意可知x<1时,g(x)<0成立,进而得到a(x+a)(x-2a+1)<0对x≥1均成立,得到a满足的条件$\left\{\begin{array}{l}{a<0}\\{a<1}\\{-a-3<1}\end{array}\right.$,求解不等式组可得答案.
解答
解:由g(x)=2x-2<0,得x<1,故对x≥1时,g(x)<0不成立,
从而对任意x≥1,f(x)<0恒成立,
由于a(x-a)(x+a+3)<0对任意x≥1恒成立,如图所示,
则必满足$\left\{\begin{array}{l}{a<0}\\{a<1}\\{-a-3<1}\end{array}\right.$,
解得-4<a<0.
则实数a的取值范围是(-4,0).
故选:C.
点评 本题考查了函数的值,考查了不等式的解法,体现了恒成立思想的应用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p为真命题 | B. | q为假命题 | C. | (¬p)∧q为真命题 | D. | (¬p)∨q为假命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30.8>30.7 | B. | log0.60.4>log0.60.5 | ||
| C. | log0.750.34>logπ3.14 | D. | 0.75-0.3<0.750.1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com