【题目】20名学生某次数学考试成绩(单位:分)的频率分布直方图如下:
(1)求频率直方图中a的值;
(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;
(3)从成绩在[50,70)的学生中人选2人,求这2人的成绩都在[60,70)中的概率.
【答案】(1)0.005,(2)2,3,(3)0.3
[解析] (1)由频率分布直方图知组距为10,频率总和为1,可列如下等式:(2a+2a+3a+6a+7a)×10=1
解得a=0. 005.
(2)由图可知落在[50,60)的频率为2a×10=0. 1
由频数=总数×频率,从而得到该范围内的人数为20×0. 1=2.
同理落在[60,70)内的人数为20×0. 15=3.
(3)记[50,60)范围内的2人分别记为A1、A2,[60,70)范围内的3人记为B1、B2、B3,从5人选2人共有情况:
A1A2,A1B1,A1B2,A1B3,A2B1,A2B2,A2B3,B1B2,B1B3,B2B3,10种情况,其中2人成绩都在[60,70)范围内的有3种情况,因此P=.
【解析】试题分析:(1)由频率分布直方图的意义可知,图中五个小长方形的面积之和为1,由此列方程即可求得.
(2)根据(1)的结果,分别求出成绩落在与的频率值,分别乘以学生总数即得相应的频数;
(3)由(2)知,成绩落在中有2人,用表示,成绩落在中的有3人,分别用、、表示,从五人中任取两人,写出所有10种可能的结果,可用古典概型求此2人的成绩都在中的概率.
解:(1)据直方图知组距=10,由
,解得
(2)成绩落在中的学生人数为
成绩落在中的学生人数为
(3)记成绩落在中的2人为,成绩落在中的3人为、、,则从成绩在的学生中人选2人的基本事件共有10个:
其中2人的成绩都在中的基本事伯有3个:
故所求概率为
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知两点, ,动点满足,线段的中垂线交线段于点.
(1)求点的轨迹的方程;
(2)过点的直线与轨迹相交于两点,设点,直线的斜率分别为,问是否为定值?并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆左右焦点为,左顶点为A(-2.0),上顶点为B,且∠=.
(1)求椭圆C的方程;
(2)探究轴上是否存在一定点P,过点P的任意直线与椭圆交于M、N不同的两点,M、N不与点A重合,使得 为定值,若存在,求出点P;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为抛物线: 的焦点,过点作两条互相垂直的直线,直线交于不同的两点,直线交于不同的两点,记直线的斜率为.
(1)求的取值范围;
(2)设线段的中点分别为点,求证: 为钝角.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com