精英家教网 > 高中数学 > 题目详情

【题目】已知函数 (其中为常数且)在处取得极值.

(1)当时,求的极大值点和极小值点;

(2)若上的最大值为1,求的值.

【答案】(1) 的极大值点为,极小值点为1.(2) ..

【解析】试题分析:(1)对函数求导得到导函数,根据导函数的零点和导函数的正负得到函数的极值;2)分 三种请况分析函数的单调性和最值,分别求出参数值,和前者情况取交集即可。

解析:

(1)因为,所以.

因为函数处取得极值,

,当时,

的变化情况如下表:

1

+

0

-

0

+

极大值

极小值

所以的单调递增区间为,单调递减区间为.

所以的极大值点为,极小值点为1.

(2)因为.

,因为处取得极值,所以

(i)当时, 上单调递增,在上单调递减,

所以在区间上的最大值为,令,解得.

(ii)当时,

①当时, 上单调递增, 上单调递减, 上单调递增,

所以最大值1可能在处取得,而

所以,解得

②当时, 在区间上单调递增, 上单调递增, 上单调递增,所以最大值1可能在处取得,而,所以,解得,与矛盾;

③当时, 在区间上单调递增,在上单调递减,

所以最大值1可能在处取得,而,矛盾,

综上所述, .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】抛物线的焦点为,准线为是抛物线上的两个动点,且满足.设线段的中点上的投影为,则的最大值是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列五个判断:

①某校高二一班和高二二班的人数分别是mn,某次测试数学平均分分别为ab,则这两个班的数学平均分为

②10名工人生产同一种零件,生产的件数分别是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有c>a>b

③设m,命题“若a>b,则”的逆否命题为假命题;

④命题p“方程表示椭圆”,命题q“的取值范围为1<<4”,则p是q的充要条件;

⑤线性相关系数r越大,两个变量的线性相关性越强;反之,线性相关性越弱;

其中正确的个数有(   )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018届河南省南阳市第一中学高三上学期第八次考试】2017514日至15日,一带一路国际合作高峰论坛在中国首都北京举行,会议期间,达成了多项国际合作协议.假设甲、乙两种品牌的同类产品出口某国家的市场销售量相等,该国质量检验部门为了解他们的使用寿命,现从这两种品牌的产品中分别随机抽取300个进行测试,结果统计如下图所示.

1)估计甲品牌产品寿命小于200小时的概率;

2)在抽取的这两种品牌产品中,抽取寿命超过300小时的产品3个,设随机变量表示抽取的产品是甲品牌的产品个数,求的分布列和数学期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20名学生某次数学考试成绩(单位:分)的频率分布直方图如下:

(1)求频率直方图中a的值;

(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;

(3)从成绩在[50,70)的学生中人选2人,求这2人的成绩都在[60,70)中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高铁、网购、移动支付和共享单车被誉为中国的“新四大发明”,彰显出中国式创新的强劲活力,某移动支付公司在我市随机抽取了100名移动支付用户进行调查,得到如下数据:

每周移动支付次数

1次

2次

3次

4次

5次

6次及以上

4

3

3

7

8

30

6

5

4

4

6

20

合计

10

8

7

11

14

50

(1)如果认为每周使用移动支付超过3次的用户“喜欢使用移动支付”,能否在犯错误概率不超过的前提下,认为是否“喜欢使用移动支付”与性别有关?

(2)每周使用移动支付6次及6次以上的用户称为“移动支付达人”,视频率为概率,在我市所有“移动支付达人”中,随机抽取4名用户,

①求抽取的4名用户中,既有男“移动支付达人”又有女“移动支付达人”的概率;

②为了鼓励女性用户使用移动支付,对抽出的女“移动支付达人”每人奖励500元,记奖励总金额为,求的数学期望.

附表及公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大庆实验中学在高二年级举办线上数学知识竞赛,在已报名的400名学生中,根据文理学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[2030)[3040)[8090],并整理得到如下频率分布直方图:

1)估算一下本次参加考试的同学成绩的中位数和众数;

2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[4050)内的人数;

3)已知样本中有一半理科生的分数不小于70,且样本中分数不小于70的文理科生人数相等.试估计总体中理科生和文科生人数的比例.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,定长为3的线段两端点分别在轴,轴上滑动,在线段上,且.

(1)求点的轨迹的方程;

(2)设点是轨迹上一点,从原点向圆作两条切线分别与轨迹交于点,直线的斜率分别记为.

①求证:

②求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥SABCD中,底面ABCD是边长为4的菱形,∠BAD60°,SASD2,点E是棱AD的中点,点F在棱SC上,且λSA//平面BEF

1)求实数λ的值;

2)求三棱锥FEBC的体积.

查看答案和解析>>

同步练习册答案