精英家教网 > 高中数学 > 题目详情

【题目】已知为抛物线 的焦点,过点作两条互相垂直的直线,直线于不同的两点,直线于不同的两点,记直线的斜率为.

(1)求的取值范围;

(2)设线段的中点分别为点,求证: 为钝角.

【答案】(1){k|k0k2}(2)见解析

【解析】试题分析

1由题意可设直线m的方程为yk(x2)将其代入抛物线方程后可得到一二次方程,根据判别式大于零可得k0,或k2同理设直线n的方程为yt(x2)可得t0,或t2根据以kt=-1可解得k0或-k0从而可得所求范围.(2)由1可得点M(2k2k22k)N(2t2t22t),根据F(01)可得到的坐标,通过证明不共线可得为钝角.

试题解析:

(1)由题可知k0,设直线m的方程为yk(x2)

消去y整理得x24kx8k=0,①

因为直线直线m于不同的两点

所以Δ=16k232k>0,

解得k0,或k2

设直线n的方程为yt(x2)

消去y整理得x24tx8t=0,

同理由Δ>0可得t0,或t2

因为mn

所以kt=-1

得-,或-

解得k0或-k0

k的取值范围为{k|k0k2}

A(x1y1)B(x2y2)M(x0y0)

由①得x1x24k

所以

所以点M(2k2k22k)

同理可得N(2t2t22t)

F(01)

所以(2k2k22k-1) (2t2t22t1)

4kt(2k22k-1)(2t22t1)

kt=-1代入上式可得,

2k22t26(kt)32(kt)26(kt)7=-2(kt)20

因为2k(2t22t1)2t(2k22k1)2(k)≠0

所以不共线

所以可得MFN为钝角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆,圆.

(1)若过点的直线被圆截得的弦长为,求直线的方程;

(2)设动圆同时平分圆的周长、圆的周长.

①证明:动圆圆心在一条定直线上运动;

②动圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图像上存在点函数的图像上存在点关于原点对称,则的取值范围是(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20名学生某次数学考试成绩(单位:分)的频率分布直方图如下:

(1)求频率直方图中a的值;

(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;

(3)从成绩在[50,70)的学生中人选2人,求这2人的成绩都在[60,70)中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )

A. 天气预报说明天下雨的概率为,则明天一定会下雨

B. 不可能事件不是确定事件

C. 统计中用相关系数来衡量两个变量的线性关系的强弱,若则两个变量正相关很强

D. 某种彩票的中奖率是,则买1000张这种彩票一定能中奖

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大庆实验中学在高二年级举办线上数学知识竞赛,在已报名的400名学生中,根据文理学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[2030)[3040)[8090],并整理得到如下频率分布直方图:

1)估算一下本次参加考试的同学成绩的中位数和众数;

2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[4050)内的人数;

3)已知样本中有一半理科生的分数不小于70,且样本中分数不小于70的文理科生人数相等.试估计总体中理科生和文科生人数的比例.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某书店销售刚刚上市的某高二数学单元测试卷,按事先拟定的价格进行5天试销,每种单价试销1天,得到如下数据:

单价x/

18

19

20

21

22

销量y/

61

56

50

48

45

1)求试销天的销量的方差和关于的回归直线方程;

附: .

2)预计以后的销售中,销量与单价服从上题中的回归直线方程,已知每册单元测试卷的成本是10元,为了获得最大利润,该单元测试卷的单价应定为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了美化环境,某公园欲将一块空地规划建成休闲草坪,休闲草坪的形状为如图所示的四边形ABCD.其中AB=3百米,AD=百米,且△BCD是以D为直角顶点的等腰直角三角形.拟修建两条小路AC,BD(路的宽度忽略不计),设∠BAD=()

(1)当cos时,求小路AC的长度;

(2)当草坪ABCD的面积最大时,求此时小路BD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,底面是边长为2的正三角形, .

(1)求证:平面平面

(2)若求三棱锥的体积.

查看答案和解析>>

同步练习册答案