精英家教网 > 高中数学 > 题目详情
4.m为何正整数时,方程组$\left\{\begin{array}{l}{mx+y+z=0}\\{3mx+(m-1)y+(2m-1)z=0}\\{2mx+3y+(m+3)z=0}\end{array}\right.$有非零解,并求出一组解使它满足x+2y+3z=7.

分析 化简方程组$\left\{\begin{array}{l}{mx+y+z=0①}\\{3mx+(m-1)y+(2m-1)z=0②}\\{2mx+3y+(m+3)z=0③}\end{array}\right.$得(5-m)(y+z)=0,从而讨论可得m=5;代入可得$\left\{\begin{array}{l}{5x+y+z=0}\\{15x+4y+9z=0}\\{10x+3y+8z=0}\end{array}\right.$,从而分析可得$\left\{\begin{array}{l}{5x+y+z=0}\\{10x+3y+8z=0}\\{x+2y+3z=7}\end{array}\right.$,从而解得.

解答 解:由题意,
$\left\{\begin{array}{l}{mx+y+z=0①}\\{3mx+(m-1)y+(2m-1)z=0②}\\{2mx+3y+(m+3)z=0③}\end{array}\right.$
①+③-②得(5-m)(y+z)=0,
若y+z=0,则mx=0,
解得m=0(舍)或x=0;
将x=0代入②,化简得mz=0,
又∵m≠0,则z=0=y;
故不成立;
故m=5;
代入方程组得,
$\left\{\begin{array}{l}{5x+y+z=0}\\{15x+4y+9z=0}\\{10x+3y+8z=0}\end{array}\right.$,
比较容易发现上下两方程相加得到中间的一个,
因而有一个方程无效,删掉中间的一个即可;
再加上x+2y+3z=7,联立可得,
$\left\{\begin{array}{l}{5x+y+z=0}\\{10x+3y+8z=0}\\{x+2y+3z=7}\end{array}\right.$,
解得,x=-$\frac{7}{8}$,y=$\frac{21}{4}$,z=-$\frac{7}{8}$.

点评 本题考查了三元一次方程组的化简与解法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知点(x,y)的坐标满足条件$\left\{\begin{array}{l}3x-y-a<0\\ x+2y-6>0\\ 2x-2y+9>0\end{array}\right.$,且x,y均为正整数.若4x-y取到最大值8,则整数a的最大值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.画出求满足12+22+32+…+i2>106的最小正整数n的程序框图并写出程序.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知向量$\overrightarrow{a}$=(1,y),$\overrightarrow{b}$=(-4,y),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则y=±2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.计算:cos23°cos68°+cos67°cos22°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设函数f(x)在R上存在导函数f′(x),对?x∈R,f(-x)+f(x)=x2,且在(0,+∞)上,f′(x)>x.若有f(2-a)-f(a)≥2-2a,则实数a的取值范围为(  )
A.(-∞,1]B.[1,+∞)C.(-∞,2]D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知三点A(-1,2),B(3,4),C(-2,5),求经过点A且与过点B、C两点的直线垂线的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}满足a1=$\frac{1}{4}$,a2=$\frac{3}{4}$,2an=an+1+an-1(n≥2,n∈N*),数列{bn}满足b1=1,3bn-bn-1=n(n≥2,n∈N*),数列{bn}的前n项和为Sn
(1)求证:数列{bn-an}为等比数列;
(2)求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知集合A={x|x2-16≤0,x∈R},B={x||x-3|≤a,x∈R},若B⊆A,则正实数a的取值范围是(0,1].

查看答案和解析>>

同步练习册答案