分析 作出对应的同学根据条件∠CMN=45°,则必有∠CMN≤∠CMT,所以只需∠CMT≥45°即可,借助于三角函数容易求出x0的范围.
解答
解:易知M(x0,1)在直线y=1上,
设圆C的方程为(x-2)2+y2=1与直线y=1的交点为T,
假设存在点N,使得∠CMN=45°,则必有∠CMN≤∠CMT,
所以要是圆上存在点N,使得∠CMN=45°,只需∠CMT≥45°
因为T(2,1),
所以只需在Rt△CMT中,tan∠CMT=$\frac{CT}{MT}$=$\frac{1}{|{x}_{0}-2|}$≥tan45°=1,
即|x0-2|≤1,
则-1≤x0-2≤1,
即1≤x0≤3
故x0∈[1,3].
则x0的最大值为3,
故答案为:3.
点评 此题重点考查了利用数形结合的思想方法解题,关键是弄清楚M点所在的位置,能够找到∠CMN与∠CMT的大小关系,从而构造出关于x0的不等式.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 分数 | [50,59) | [60,69) | [70,79) | [80,89) | [90,100] |
| 甲班频数 | 5 | 6 | 4 | 4 | 1 |
| 乙班频数 | 1 | 3 | 6 | 5 | 5 |
| 甲班 | 乙班 | 总计 | |
| 成绩优良 | |||
| 成绩不优良 | |||
| 总计 |
| P(K2≥k) | 0.10 | 0.05 | 0.025 | 0.010 |
| k | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com