精英家教网 > 高中数学 > 题目详情
20.为推行“新课堂”教学法,某化学教师分别用传统教学和“新课堂”两种不同的教学方式,在甲、乙两个平行班进行教学实验,为了比较教学效果,期中考试后,分别从两个班级中个随机抽取20名学生的成绩进行统计,结果如表:记成绩不低于70分者为“成绩优良”.
 分数[50,59)[60,69)[70,79)[80,89)[90,100]
 甲班频数 5 6 4 4 1
 乙班频数 1 3 6 5 5
(1)由以上统计数据填写下面2×2列联表,并判断“成绩优良与教学方式是否有关”?
  甲班 乙班 总计
 成绩优良   
 成绩不优良   
 总计   
附:K2=$\frac{n(ad-bc)^{2}}{(a+c)(b+d)(a+b)(c+d)}$
临界值表:
 P(K2≥k) 0.10 0.05 0.025 0.010
 k 2.706 3.841 5.024 6.635
(2)现从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核,在这8人中,记成绩不优良的乙班人数为X,求X的分布列及数学期望.

分析 (1)分别计算出成绩优秀和成绩不优秀的人数,求出K2的值,判断在犯错概率不超过0.025的前提下认为“成绩优良与教学方式有关”
(2)先确定X的取值,分别求其概率,求出分布列和数学期望.

解答 解:(1)

 甲班 乙班 总计 
成绩优良  9 1625 
成绩不优良  11 415
 总计 20 2040 
根据2×2列联中的数据可得K2=$\frac{40(9×4-16×11)^{2}}{25×15×20×20}$≈5.227>5.024,
∴在犯错概率不超过0.025的前提下认为“成绩优良与教学方式有关”
(2)由表可知在8人中成绩不优良的人数为$\frac{15}{40}$×8=3,
X的可能取值为:0,1,2,3,
P(X=0)=$\frac{{C}_{11}^{3}}{{C}_{15}^{3}}$=$\frac{33}{91}$,P(X=2)=$\frac{{C}_{11}^{2}•{C}_{4}^{1}}{{C}_{15}^{3}}$=$\frac{44}{91}$,
P(X=2)=$\frac{{C}_{11}^{1}{C}_{4}^{2}}{{C}_{15}^{3}}$=$\frac{66}{455}$,P(X=3)=$\frac{{C}_{4}^{3}}{{C}_{15}^{3}}$=$\frac{4}{455}$,
∴X的分布列为:
 X 0
 P$\frac{33}{91}$$\frac{44}{91}$ $\frac{65}{455}$$\frac{4}{455}$
∴E(X)=0×$\frac{33}{91}$+1×$\frac{44}{91}$+2×$\frac{66}{455}$+3×$\frac{4}{455}$=$\frac{364}{455}$=$\frac{4}{5}$
X的数学期望$\frac{4}{5}$.
方法二:X满足超几何分布期望可以用公式E(X)=3×($\frac{4}{15}$)=$\frac{4}{5}$,
X的数学期望$\frac{4}{5}$.

点评 本题考查概率的计算,考查独立性检验知识,求X的分布列及其期望,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.设点M(x0,1),已知圆心C(2,0),半径为1的圆上存在点N,使得∠CMN=45°,则x0的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在△ABC中,∠B=$\frac{π}{3}$,AC=2$\sqrt{3}$.
(1)若∠BAC=θ,求AB和BC的长.(结果用θ表示);
(2)当AB+BC=6时,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某单位老年人、中年人、青年人的人数如表,用分层抽样的方法抽取17人进行单位管理问卷调查,其中抽到3位老年人,则抽到的中年人人数为(  )
 类别 人数
 老年人 15
 中年人
 青年人40 
A.9B.8C.6D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax2+x-a(a∈R)
(1)若函数f(x)有最大值$\frac{17}{8}$,求实数a的值;
(2)解不等式f(x)>1(用a表示)
(3)若x>1时,恒有f(x)>0成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图所示的框图,若输入的n的值为4,则输出的S=(  )
A.3B.4C.-1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设数列{an}的前n项和为S,若Sn+1,Sn+2,Sn+3成等差数列,且a2=-2,则a7=(  )
A.16B.32C.64D.128

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设x,y满足约束条件$\left\{\begin{array}{l}{y≤2x}\\{x+y≤1}\\{y+1≥0}\end{array}\right.$,则z=x+3y的最大值是$\frac{7}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}}$)在某一周期内图象最低点与最高点的坐标分别为$(\frac{7π}{3},-\sqrt{3})和(\frac{13π}{3},\sqrt{3})$.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)设△ABC的三内角A,B,C的对边分别为a,b,c,且f(A)=$\sqrt{3}$,a=3,sinB+sinC=1,求△ABC的面积S.

查看答案和解析>>

同步练习册答案