精英家教网 > 高中数学 > 题目详情
数列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*).证明数列{nan}(n≥2)为等比数列.
考点:等比关系的确定
专题:等差数列与等比数列
分析:在数列递推式中取n=n-1,得到a1+2a2+3a3+…+(n-1)an-1=
n
2
an(n≥2)
,两递推式作差后得答案.
解答: 证明:∵a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

a1+2a2+3a3+…+(n-1)an-1=
n
2
an(n≥2)

两式相减得nan=
n+1
2
an+1-
n
2
an

(n+1)an+1
nan
=3(n≥2)

因此,数列{nan}从第二项起,是以2为首项,以3为公比的等比数列.
点评:本题考查了数列递推式,考查了等比关系的确定,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一组数据的平均数是3,将这组数据中的每一个数据都乘以2,所得到的一组数据的平均数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:(-6)15÷(-8)5÷(-9)7+(-0.75)3×(-2)6

查看答案和解析>>

科目:高中数学 来源: 题型:

一台机器由于使用时间较长,生产的零件会有一些缺损,按不同的转速生产出来的零件有缺损的统计数据如下表
转速x转/秒681214
每小时生产有缺损零件数y/个2468
问:
(1)请画出上表数据的散点图;
(2)请根据散点图,判断转速x和每小时生产的缺损零件数y之间是否具有线性关系;
参考公式:
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
,a=
.
y
-
b
x,若有,求回归直线方程y=bx+a;
(3)若实际生产中,允许每小时的产品中有缺损的零件最多为10个,那么,机器的运转速度应控制在什么范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点分别为F1(-1,0),F2(1,0),且经过点(1,
3
2
),点A(xA,yA),(yA>0)是椭圆上一点,连接AF1,AF2并延长交椭圆于B,C两点.
(1)求椭圆方程;
(2)若
AF1
=
5
3
F1B
,求点A坐标;
(3)当B,C的纵坐标之比等于2时,求点A坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}是等比数列,对任意n∈N*,Tn=a1+3a2+5a3+…+(2n-1)an,已知T1=1,T2=7.
(1)求数列{an}的通项公式;
(2)求使得Tn+1<2(Tn+60)成立的最大正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是R上的奇函数,当x∈(0,+∞)时,f(x)=x2+x-1.
(1)求f(0)的值;
(2)求x∈(-∞,0)时,f(x)的解析式;
(3)求f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=2a与y=|ax-1|有交点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
π
4
<α<
4
,0<β<
π
4
,cosα=-
3
5
,sinβ=
5
13
,求sin(α+β)的值.

查看答案和解析>>

同步练习册答案