分析 (I)由$a_n^2+2{a_n}=4{S_n}+3$,当n=1时,得$a_1^2+2{a_1}=4{a_1}+3$,解出即可得出.
(Ⅱ) 由$a_n^2+2{a_n}=4{S_n}+3$,可知$a_{n+1}^2+2{a_{n+1}}=4{S_{n+1}}+3$.相减化为及其an>0可得an+1-an=2.利用等差数列的通项公式即可得出.
(III)由an=2n+1,${b_n}=\frac{1}{{{a_n}{a_{+1}}}}=\frac{1}{(2n+1)(2n+3)}=\frac{1}{2}(\frac{1}{2n+1}-\frac{1}{2n+3})$.利用“裂项求和”方法即可得出.
解答 解:(I)由$a_n^2+2{a_n}=4{S_n}+3$,
当n=1时,得$a_1^2+2{a_1}=4{a_1}+3$,
解得a1=-1,a1=3.
由an>0,∴a1=3.
(Ⅱ) 由$a_n^2+2{a_n}=4{S_n}+3$①
可知$a_{n+1}^2+2{a_{n+1}}=4{S_{n+1}}+3$.②
由②-①可得$a_{n+1}^2-a_n^2+2({a_{n+1}}-{a_n})=4({S_{n+1}}-{S_n})=4{a_{n+1}}$,
即$2({a_{n+1}}+{a_n})=a_{n+1}^2-a_n^2=({a_{n+1}}+a)({a_{n+1}}-a)$,
由于an>0可得an+1-an=2.
又a1=3.∴数列{an}是首项为3,公差为2的等差数列,
∴数列{an}通项公式为an=2n+1.
(III)由an=2n+1,${b_n}=\frac{1}{{{a_n}{a_{+1}}}}=\frac{1}{(2n+1)(2n+3)}=\frac{1}{2}(\frac{1}{2n+1}-\frac{1}{2n+3})$.\
设数列{bn}的前n项和为Tn,则Tn=b1+b2+…+bn=$\frac{1}{2}[{(\frac{1}{3}-\frac{1}{5})+(\frac{1}{5}-\frac{1}{7})+…+(\frac{1}{2n+1})-(\frac{1}{2n+3})}]=\frac{n}{3(2n+3)}$.
点评 本题考查了数列递推关系、等差数列的定义与通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{10}}}{10}$ | B. | $\frac{{\sqrt{10}}}{5}$ | C. | $\frac{{3\sqrt{10}}}{10}$ | D. | $\frac{{\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com