分析 (1)根据数列的递推公式即可求出数列的通项公式,
(2)利用裂项求和即可求出答案.
解答 解:(1)由2an=Sn+2得,2an-1=Sn-1+2(n≥2),
两式相减得an=2an-1(n≥2).
当n=1时,a1=2,
所以数列{an}是首项为2、公比为2的等比数列,
则${a_n}={2^n}$.
(2)由(1)知,bn=n,
所以$\frac{1}{bnbn+2}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$).
则数列{$\frac{1}{bnbn+2}$}的前n项和Tn=$\frac{1}{2}$[(1-$\frac{1}{3}$)+($\frac{1}{2}$-$\frac{1}{4}$)+($\frac{1}{3}$-$\frac{1}{5}$)+…+($\frac{1}{n}$-$\frac{1}{n+2}$)]=$\frac{1}{2}$($\frac{3}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$).
点评 本题考查了数列的通项公式的求法和裂项求和,属于中档题.
科目:高中数学 来源:2017届河北沧州市高三9月联考数学(理)试卷(解析版) 题型:解答题
如图,在三棱柱
中,
平面
,
,
,
,
,
,
为线段
上一点.
(Ⅰ)求
的值,使得
平面
;
(Ⅱ)在(Ⅰ)的条件下,求二面角
的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | M∩N=∅ | B. | M∪N=R | C. | N⊆M | D. | M⊆∁RN | ||||
| E. | M⊆∁RN |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com