精英家教网 > 高中数学 > 题目详情
11.已知cos(π+α)=$\frac{4}{5}$,且$\frac{π}{2}$<α<π.
(Ⅰ)求5sin(α+π)-4tan(3π-α)的值
(Ⅱ)若0<β<$\frac{π}{2}$,cos(β-α)=$\frac{\sqrt{5}}{5}$,求sin($\frac{π}{2}$+2β)的值.

分析 (Ⅰ)由已知利用诱导公式,同角三角函数基本关系式可求cosα,sinα,tanα,根据诱导公式化简所求即可计算得解.
(Ⅱ)利用角的范围及同角三角函数基本关系式可求sin(β-α)的值,利用两角和的余弦函数公式可求cosβ=cos[(β-α)+α]的值,进而利用诱导公式,二倍角的余弦函数公式即可计算得解.

解答 解:(Ⅰ)∵cos(π+α)=$\frac{4}{5}$=-cosα,且$\frac{π}{2}$<α<π,
∴cosα=-$\frac{4}{5}$,sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{3}{5}$,tanα=-$\frac{3}{4}$,
∴5sin(α+π)-4tan(3π-α)=-5sinα+4tanα=(-5)×$\frac{3}{5}$+4×(-$\frac{3}{4}$)=-6.
(Ⅱ)∵0<β<$\frac{π}{2}$,cos(β-α)=$\frac{\sqrt{5}}{5}$,
∴-π<β-α<0,可得:sin(β-α)=-$\sqrt{1-co{s}^{2}(β-α)}$=-$\frac{2\sqrt{5}}{5}$,
∴cosβ=cos[(β-α)+α]=cos(β-α)cosα-sin(β-α)sinα=$\frac{\sqrt{5}}{5}$×(-$\frac{4}{5}$)-(-$\frac{2\sqrt{5}}{5}$)×$\frac{3}{5}$=$\frac{2\sqrt{5}}{25}$
∴sin($\frac{π}{2}$+2β)=cos2β=2cos2β-1=-$\frac{117}{125}$.

点评 本题主要考查了诱导公式,同角三角函数基本关系式,两角和的余弦函数公式,二倍角的余弦函数公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cos2B+$\frac{1}{2}$sin2B=1,若|$\overrightarrow{BC}$+$\overrightarrow{AB}$|=3,则$\frac{16b}{ac}$的最小值为$\frac{16(2-\sqrt{2})}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知随机变量X服从正态分布N(1,σ2),且P(x≥2)=0.2,则P(x≤0)=(  )
A.0.2B.0.4C.0.6D.0.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\frac{1}{x-a}$为奇函数,g(x)=lnx-2f(x),则函数g(x)的零点所在区间为(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.废品率x%和每吨生铁成本 y(元)之间的回归直线方程为y=256+3x,表明(  )
A.废品率每增加 1%,生铁成本增加 259 元
B.废品率每增加 1%,生铁成本增加 3 元
C.废品率每增加 1%,生铁成本平均每吨增加 3 元
D.废品率不变,生铁成本为 256 元

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.古代的铜钱在铸造时为了方便细加工,常将铜钱穿在一根木棒上,加工时为了较好地固定铜钱,将铜钱当中开成方孔,于是人们也将铜钱称为“孔方兄”.已知图中铜钱是直径为3cm的圆,中间方孔的边长为lcm,若在铜钱所在圆内随机取一点,则此点正好位于方孔中的概率为(  )
A.$\frac{4}{9π}$B.$\frac{9π}{4}$C.$\frac{4}{3π}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知a<0,-1<b<0,则下列各式正确的是(  )
A.ab2<ab<aB.ab2<a<abC.a<ab<ab2D.a<ab2<ab

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若${∫}_{0}^{\frac{π}{6}}$cosxdx=${∫}_{0}^{a}$x2dx,则a3等于(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{3\sqrt{3}}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知某几何体的三视图如图所示,则该几何体的表面积为(  )
A.B.C.2π+4D.3π+4

查看答案和解析>>

同步练习册答案