精英家教网 > 高中数学 > 题目详情
16.古代的铜钱在铸造时为了方便细加工,常将铜钱穿在一根木棒上,加工时为了较好地固定铜钱,将铜钱当中开成方孔,于是人们也将铜钱称为“孔方兄”.已知图中铜钱是直径为3cm的圆,中间方孔的边长为lcm,若在铜钱所在圆内随机取一点,则此点正好位于方孔中的概率为(  )
A.$\frac{4}{9π}$B.$\frac{9π}{4}$C.$\frac{4}{3π}$D.$\frac{3π}{4}$

分析 求出铜钱面积的大小和中间正方形孔面积的大小,然后代入几何概型计算公式进行求解.

解答 解:如图所示:

∵S=1,S=π($\frac{3}{2}$)2=$\frac{9π}{4}$,
∴P=$\frac{{S}_{正}}{{S}_{圆}}$=$\frac{4}{9π}$.
则点正好落人孔中的概率是 $\frac{4}{9π}$,
故选:A.

点评 几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=$\frac{N(A)}{N}$求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若函数f(x)=lg(10x+1)+ax是偶函数,g(x)=$\frac{{4}^{x}-b}{{2}^{x}}$是奇函数,则a+b的值是(  )
A.0.5B.1C.-0.5D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图所示,∠BAC=$\frac{2π}{3}$,圆M与AB,AC分别相切于点D,E,AD=1,点P是圆M及其内部任意一点,且$\overrightarrow{AP}$=x$\overrightarrow{AD}$+y$\overrightarrow{AE}$(x,y∈R),则x+y的取值范围是[4-2$\sqrt{3}$,4+2$\sqrt{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,8,13….该数列的特点是:前两个数都是1,从第三个数起,每个数都等于它前面两个数的和,人们把这样的一列数组成的数列{an}称为“斐波那契数列”,则a2016a2018-(a20172等于(  )
A.1B.-1C.2017D.-2107

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知cos(π+α)=$\frac{4}{5}$,且$\frac{π}{2}$<α<π.
(Ⅰ)求5sin(α+π)-4tan(3π-α)的值
(Ⅱ)若0<β<$\frac{π}{2}$,cos(β-α)=$\frac{\sqrt{5}}{5}$,求sin($\frac{π}{2}$+2β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.五一假期间,小明参加由某电视台推出的大型户外竞技类活动,该活动共有四关,若四关都闯过,则闯关成功,否则落水失败,小明闯过一至四关的概率依次是$\frac{7}{8}$,$\frac{5}{7}$,$\frac{2}{3}$,$\frac{3}{10}$,则小明闯关失败的概率为$\frac{7}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=(x+1)ex的图象在点(0,1)处的切线方程为(  )
A.x-y+1=0B.2x-y+1=0C.ex-y+1=0D.2x+y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知点A(1,-2),若向量$\overrightarrow{AB}$与$\overrightarrow{a}$=(2,3)同向,|$\overrightarrow{AB}$|=2$\sqrt{13}$,则点B的坐标为(  )
A.(4,6)B.(-4,-6)C.(5,4)D.(-5,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,离心率e=$\frac{\sqrt{3}}{2}$,且过点($\sqrt{3}$,$\frac{1}{2}$).
(1)求椭圆C的方程;
(2)过F2的直线m交椭圆C于不同的两点M、N,试求△F1MN面积最大时直线m的方程.

查看答案和解析>>

同步练习册答案