精英家教网 > 高中数学 > 题目详情
已知数列{an}满足a1=1,且各项均不等于零,an+1+2anan+1-an=0,(n∈N*
(1)求证数列{
1
an
}
是等差数列;
(2)a1a2+a2a3+a3a4+…+anan+1
21
43
,求n的取值范围.
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由已知条件变形,得到
1
an+1
-
1
an
=2
,由此证明数列{
1
an
}
是等差数列.
(2)由(1)得到
an=
1
2n-1
(n∈N+)
,从而得到anan+1=
1
2
(
1
2n-1
-
1
2n+1
)
,由此得到a1a2+a2a3+…+anan+1=
n
2n+1
21
43
,由此能求出n的取值范围.
解答: 解:(1)∵数列{an}满足a1=1,且各项均不等于零,
an+1+2anan+1-an=0,(n∈N*
1
an+1
-
1
an
=2

∴数列{
1
an
}
是等差数列.
(2)由(1)知,数列{
1
an
}
是首项为1,公差为2的等差数列,
1
an
=1+(n-1)•2
=2n-1,
∴{an}的通项公式为
an=
1
2n-1
(n∈N+)

∴anan+1=
1
2n-1
1
2n+1
=
1
2
(
1
2n-1
-
1
2n+1
)

∴a1a2+a2a3+…+anan+1
=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
)

=
1
2
(1-
1
2n+1
)

=
n
2n+1

∵a1a2+a2a3+…+anan+1
21
43

n
2n+1
21
43
,解得n>21,
∵n∈N*,∴n≥22,n∈N*
∴n的取值范围{n|n≥22,n∈N*}.
点评:本题考查等差数列的证明,考查数列前n项和的求法及其应用,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

条件p:x≥0,条件q:x2≤x,则p是q的(  )
A、充分而不必要条件
B、必要而不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

“开门大吉”是某电视台推出的游戏益智节目.选手面对1-4号4扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.正确回答每一扇门后,选手可自由选择带着奖金离开比赛,还可继续挑战后面的门以获得更多奖金(奖金金额累加),但是一旦回答错误,奖金将清零,选手也会离开比赛.在一次场外调查中,发现参加比赛的选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否人数如图所示. 
每扇门对应的梦想基金:(单位:元)
第一扇门 第二扇门 第三扇门 第四扇门
1000 2000 3000 5000
(Ⅰ)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称与否与年龄有关?说明你的理由.(下面的临界值表供参考)
P(K2≥k) 0.10 0.05 0.025 0.010 0.005 0.001
k 2.706 3.841 5.024 6.635 7.879 10.828
(Ⅱ)若某选手能正确回答第一、二、三、四扇门的概率分别为
4
5
3
4
2
3
1
3
,正确回答一个问题后,选择继续回答下一个问题的概率是
1
2
,且各个问题回答正确与否互不影响.设该选手所获梦想基金总数为ξ,求ξ的分布列及数学期望.(参考公式K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=4cosxsin(x+
π
6
)-1,x∈R.
(1)求f(0)的值;
(2)若将y=f(x)的图象向右平移ϕ(ϕ>0)个单位,所得到的曲线恰好经过坐标原点,求ϕ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

公差不为零的等差数列{an}中,a4=7,且a2、a5、a14成等比数列.
(1)求数列{an}的通项公式.
(2)求a1+a4+a7+…+a3n-2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知平面α∩β=l,点A∈α,点B∈α,点C属于β,且A∉l,B∉l,直线AB与l不平行,那么平面ABC与平面β的交线与l有什么关系?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,点(n,
Sn
n
)(n∈N*)
均在函数y=
1
2
x+
1
2
的图象上.
(1)求数列{an}的通项公式;
(2)设bn=
1
anan+1
,Tn是数列{bn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1的棱长为2,P是AA1的中点,E是BB1上的点,则PE+EC的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x=2m-1,m∈N+},B={x|x=2m+1,m∈N+},则集合A与B之间的关系是
 

查看答案和解析>>

同步练习册答案