精英家教网 > 高中数学 > 题目详情
11.空间两个角α,β满足α与β的两边平行,若α=50°,求角β.

分析 根据平行公理知道当空间两个角α与β的两边对应平行,得到这两个角相等或互补,根据所给的角的度数,即可得到β的度数.

解答 解:由题意:∵空间两个角α,β的两边对应平行,
∴这两个角相等或互补,
∵α=50°,
∴β=50°或130°.

点评 本题考查平行公理,本题解题的关键是不要漏掉两个角互补这种情况,本题是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知tan(α+$\frac{π}{3}$)=2,则$\frac{sin(α+\frac{4π}{3})+cos(\frac{2π}{3}-α)}{cos(\frac{π}{6}-α)-sin(α+\frac{5π}{6})}$=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知两个等差数列 {an}和{bn}的前 n项和分别为Sn,Tn,若$\frac{S_n}{T_n}$=$\frac{2n}{3n+1}$,则 $\frac{a_2}{{{b_3}+{b_7}}}$+$\frac{a_8}{{{b_4}+{b_6}}}$=$\frac{9}{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知a>0,b>0且ab=a+b,则a+4b的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2x+a•2-x,其中常数a≠0.
(1)当a=1时,f(x)的最小值;
(2)当a=256时,是否存在实数k∈(1,2],使得不等式f(k-cosx)≥f(k2-cos2x)对任意x∈R恒成立?若存在,求出所有满足条件的k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设M,N分别为双曲线x2-$\frac{{y}^{2}}{9}$=1的左右焦点,若P在双曲线上,且$\overrightarrow{PM}•\overrightarrow{PN}$=0,则|$\overrightarrow{PM}$|+|$\overrightarrow{PN}$|=$2\sqrt{19}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若一个长方体的高为80cm,长比宽多10cm,则这个长方体的体积y(cm3)与长方体的宽x(cm)之间的表达式是y=80x(x+10),x∈(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.直线l:(k+1)x-ky-1=0(k∈R)与圆C:x2+(y-1)2=1的位置关系是(  )
A.相交B.相切C.相离D.相交或相切

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.“a=2”是“直线(a2-a)x+y=0和直线2x+y+1=0互相平行”的充分不必要条件,若曲线y2=xy+2x+k通过点(a,-a)(a∈R),则k的取值范围是$[-\frac{1}{2},+∞)$.

查看答案和解析>>

同步练习册答案