精英家教网 > 高中数学 > 题目详情
2.设随机向量η服从正态分布N(1,σ2),若P(η<-1)=0.2,则函数f(x)=$\frac{1}{3}{x^3}+{x^2}+{η^2}$x没有极值点的概率是0.7.

分析 令f′(x)=0至多只有1解得出η的范围,再利用正态分布的对称性得出f(x)无极值点的概率.

解答 解:f′(x)=x2+2x+η2
若f(x)没有极值点,则f′(x)=0最多只有1个解,
∴△=4-4η2≤0,
解得η≤-1或η≥1.
∵η~N(1,σ2),∴P(η≥1)=0.5,
又P(η<-1)=0.2,
∴P(η≤-1或η≥1)=0.5+0.2=0.7.
故答案为:0.7.

点评 本题考查了正态分布的对称性特点,函数极值点的定义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.数学名著《算学启蒙》中有如下问题:“松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.”如图是源于其思想的一个程序框图,若输入的a,b的值分别为16,4,则输出的n的值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设x,y满足约束条件$\left\{\begin{array}{l}{2x+y-5≤0}\\{x-y-1≤0}\\{x≥1}\end{array}\right.$,若z=ax+y仅在点(2,1)处取得最大值,则a的取值范围是(  )
A.(-∞,-1)B.(2,+∞)C.(0,2)D.(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设x,y满足约束条件$\left\{\begin{array}{l}{2x+y-5≤0}\\{x-y-1≤0}\\{x≥1}\end{array}\right.$,若z=3x+y的最大值是(  )
A.6B.7C.0D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,BQ∩AC=N,M是棱PC上的一点,PA=PD=4=AD=2BC,CD=2.
(Ⅰ)求证:直线MN∥平面PAB;
(Ⅱ)求四棱锥P-AQM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=(1-m)lnx+$\frac{m}{2}{x^2}$-x,m∈R且m≠0.
(Ⅰ)当m=2时,令g(x)=f(x)+log2(3k-1),k为常数,求函数y=g(x)的零点的个数;
(Ⅱ)若不等式f(x)>1-$\frac{1}{m}$在x∈[1,+∞)上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列函数中,在定义域上为减函数的是(  )
A.y=x2B.y=cosxC.$y={x^{\frac{1}{2}}}$D.y=-lnx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.计算:$\underset{lim}{x→0}(1+2x)^{\frac{1}{x}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某几何体的三视图如图所示(单位:cm),则该几何体的体积等于(  )
A.24+6πcm3B.24+12πcm3C.48+12πcm3D.96+12πcm3

查看答案和解析>>

同步练习册答案