精英家教网 > 高中数学 > 题目详情
17.如图在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,BQ∩AC=N,M是棱PC上的一点,PA=PD=4=AD=2BC,CD=2.
(Ⅰ)求证:直线MN∥平面PAB;
(Ⅱ)求四棱锥P-AQM的体积.

分析 (Ⅰ)推导出PQ⊥AD,从而PQ⊥平面ABCD,以Q为原点,QA为x轴,QB为y轴,QP为z轴,建立空间直角坐标系,利用向量法能求出直线MN∥平面PAB.
(Ⅱ)求出平面PAQ的法向量$\overrightarrow{m}$和$\overrightarrow{QM}$,从而求出M到平面PAQ的距离d,四棱锥P-AQM的体积VP-AQM=VM-PAQ,由此能求出结果.

解答 证明:(Ⅰ)∵PA=PD,Q为AD的中点,∴PQ⊥AD.
∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,
∴PQ⊥平面ABCD.
如图,以Q为原点,QA为x轴,QB为y轴,QP为z轴,
建立空间直角坐标系,
则A(2,0,0),B(0,2,0),C(-2,2,0),N(0,1,0),
P(0,0,2$\sqrt{3}$),M(-1,1,$\sqrt{3}$),
$\overrightarrow{MN}$=(1,0,-$\sqrt{3}$),$\overrightarrow{AB}$=(-2,2,0),$\overrightarrow{AP}$=(-2,0,2$\sqrt{3}$),
设平面PAB的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AB}=-2x+2y=0}\\{\overrightarrow{n}•\overrightarrow{AP}=-2x+2\sqrt{3}z=0}\end{array}\right.$,取x=$\sqrt{3}$,得$\overrightarrow{n}$=($\sqrt{3},\sqrt{3},1$),
∵$\overrightarrow{n}•\overrightarrow{MN}$=$\sqrt{3}+0-\sqrt{3}$=0,MN?平面PAB,
∴直线MN∥平面PAB.
解:(Ⅱ)平面PAQ的法向量$\overrightarrow{m}$=(0,1,0),
$\overrightarrow{QM}$=(-1,1,$\sqrt{3}$),
M到平面PAQ的距离d=$\frac{|\overrightarrow{m}•\overrightarrow{QM}|}{|\overrightarrow{m}|}$=$\frac{1}{\sqrt{1}}$=1,
S△PAQ=$\frac{1}{2}×|PQ|×|AQ|$=$\frac{1}{2}×2\sqrt{3}×2$=2$\sqrt{3}$,
∴四棱锥P-AQM的体积:
VP-AQM=VM-PAQ=$\frac{1}{3}×{S}_{△PAQ}×d$=$\frac{1}{3}×2\sqrt{3}×1=\frac{2\sqrt{3}}{3}$.

点评 本题考查线面平行的证明,考查几何体体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、数形结合思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{1}{3}{x^3}-\frac{1}{2}a{x^2}$+1,a≠0.
(I)当a=1时,求f(x)的单调区间;
(II)设x0>$\frac{a}{2}$,求函数g(x)=f(x)-f(x0)-(x-x0)f′(x0)在区间$(\frac{a}{2},+∞)$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知A、B、C是抛物线y2=2px(p>0)上三个不同的点,且AB⊥AC.
(Ⅰ)若A(1,2),B(4,-4),求点C的坐标;
(Ⅱ)若抛物线上存在点D,使得线段AD总被直线BC平分,求点A的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知在平面直角坐标系xOy中,过点P(1,0)的直线l的参数方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t+1}\\{y=\frac{1}{2}t}\end{array}\right.$(t是参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C点的极坐标方程为ρ=-4sin(θ-$\frac{π}{6}$).
(1)判断直线l与曲线C的位置关系;
(2)若直线l与曲线C交于两点A、B,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.△ABC的三个内角A、B、C,所对的边分别是a、b、c,若a=2,c=2$\sqrt{3}$,tanA+tanB=$\sqrt{3}$-$\sqrt{3}$tanAtanB,则△ABC的面积S△ABC=(  )
A.$\frac{\sqrt{3}}{2}$B.1C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设随机向量η服从正态分布N(1,σ2),若P(η<-1)=0.2,则函数f(x)=$\frac{1}{3}{x^3}+{x^2}+{η^2}$x没有极值点的概率是0.7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.数列{an}满足a1=2,an-an-1=$\frac{1}{2^n}$(n≥2,n∈N*),则an=$\frac{5}{2}$$-\frac{1}{{2}^{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某矿业公司对A、B两个铁矿项目调研结果是:A项目获利40%的可能性为0.6,亏损20%的可能性为0.4;B项目获利35%的可能性为0.6,亏损10%的可能性为0.2,不赔不赚的可能性为0.2.现计划用不超过100万元的资金投资A、B两个项目,假设投资A项目的资金为x(x≥0)万元,投资B项目的资金为y(y≥0)万元,且公司要求对A项目的投资不得低于B项目.
(1)请根据公司投资限制条件,写出x,y满足的条件,并将它们表示在平面xOy内;
(2)记投资A、B项目的利润分别为M和N,试写出随机变量M与N的分布列和期望E(M),E(N);
(3)根据(1)的条件和调研结果,试估计两个项目的平均利润之和z=E(M)+E(N)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知抛物线x2=4y,直线l的方程y=-2,动点P在直线l上,过P点作抛物线的切线,切点分别为A,B,线段A,B的中点为Q
(Ⅰ)求证:直线AB恒过定点;
(Ⅱ)求Q点轨迹方程.

查看答案和解析>>

同步练习册答案