精英家教网 > 高中数学 > 题目详情
4.已知复数z满足|z|=1,则|z+1-i|取得最大M时,复数z=$\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i$.

分析 由题意画出图形,利用复数模的几何意义求得答案.

解答 解:如图,复数z在圆|z|=1上,|z+1-i|的几何意义为圆上的动点与定点(-1,1)的距离,
由图可知,当|z+1-i|取得最大M时,复数z对应的点为N,此时N($\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}$),
∴z=$\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i$.
故答案为:$\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i$.

点评 本题考查复数的代数表示法及其几何意义,考查了数形结合的解题思想方法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.数列{an}中,${a_1}=1,{a_2}=\frac{2}{3}$,且n≥2时,有$\frac{1}{{{a_{n-1}}}}+\frac{1}{{{a_{n+1}}}}$=$\frac{2}{a_n}$,则(  )
A.${a_n}={(\frac{2}{3})^n}$B.${a_n}={(\frac{2}{3})^{n-1}}$C.${a_n}=\frac{2}{n+2}$D.${a_n}=\frac{2}{n+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,a2=b2+c,acosB=4bcosA,则c=$\frac{5}{3}$,;若a=3,则△ABC是锐角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=|-x-1|的单调递减区间是(-∞,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若a>0且a≠1,则函数y=ax-1-1的图象必经过的点是(1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知z=$\frac{1+ai}{1-i}$为纯虚数(i是虚数单位),则|z+1|=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在等比数列{an}中,对任意n∈N*,都有an=an+1+an+2,则公比q=$\frac{-1±\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知曲线y=$\frac{1}{3}{x^3}+\frac{4}{3}$,
(1)求f′(5)的值
(2)求曲线在点P(2,4)处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ex+ax+b(a,b∈R,e是自然对数的底数)在点(0,1)处的切线与x轴平行.
(Ⅰ)求a,b的值;
(Ⅱ)若对一切x∈R,关于x的不等式f(x)≥(m-1)x+n恒成立,求m+n的最大值.

查看答案和解析>>

同步练习册答案