精英家教网 > 高中数学 > 题目详情
14.数列{an}中,${a_1}=1,{a_2}=\frac{2}{3}$,且n≥2时,有$\frac{1}{{{a_{n-1}}}}+\frac{1}{{{a_{n+1}}}}$=$\frac{2}{a_n}$,则(  )
A.${a_n}={(\frac{2}{3})^n}$B.${a_n}={(\frac{2}{3})^{n-1}}$C.${a_n}=\frac{2}{n+2}$D.${a_n}=\frac{2}{n+1}$

分析 通过$\frac{1}{{{a_{n-1}}}}+\frac{1}{{{a_{n+1}}}}$=$\frac{2}{a_n}$及${a_1}=1,{a_2}=\frac{2}{3}$可知数列{$\frac{1}{{a}_{n}}$}是首项为1、公差为$\frac{1}{2}$的等差数列,进而计算可得结论.

解答 解:∵当n≥2时,有$\frac{1}{{{a_{n-1}}}}+\frac{1}{{{a_{n+1}}}}$=$\frac{2}{a_n}$,
∴数列{$\frac{1}{{a}_{n}}$}是等差数列,
又∵$\frac{1}{{a}_{1}}$=1,$\frac{1}{{a}_{2}}$=$\frac{3}{2}$,
∴数列{$\frac{1}{{a}_{n}}$}是首项为1、公差为$\frac{1}{2}$的等差数列,
∴$\frac{1}{{a}_{n}}$=1+$\frac{1}{2}$(n-1)=$\frac{n+1}{2}$,
∴an=$\frac{2}{n+1}$,
故选:D.

点评 本题考查数列的通项,考查运算求解能力,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设a=log32,b=20.3,c=30.4,则a,b,c的大小关系是(  )
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.定义在R上的偶函数f(x)满足f(x)>0,且对任意x∈R,f(x+2)=$\frac{1}{f(x)}$恒成立,则f(2015)=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知f(x)为R上的可导函数,且对?x∈R,均有f(x)>f′(x),则有(  )
A.e2016f(-2016)<f(0),f(2016)<e2016f(0)B.e2016f(-2016)>f(0),f(2016)>e2016f(0)
C.e2016f(-2016)<f(0),f(2016)>e2016f(0)D.e2016f(-2016)>f(0),f(2016)<e2016f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.不等式组$\left\{\begin{array}{l}2x>4\\ 2{x^2}-3x-2>0\\ 3x+a>0\end{array}\right.$的解集是{x|x>2},则实数a的取值范围是(  )
A.a≤-6B.a≥-6C.a≤6D.a≥6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{2}$,($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知A(2,0,1),B(1,-3,1),点M在x轴上,且到A、B两点的距离相等,则M的坐标为(  )
A.(-3,0,0)B.(0,-3,0)C.(0,0,-3)D.(0,0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=2sinxsin(x+$\frac{π}{2}$)的零点个数为无数个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知复数z满足|z|=1,则|z+1-i|取得最大M时,复数z=$\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i$.

查看答案和解析>>

同步练习册答案