精英家教网 > 高中数学 > 题目详情
16.在四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥DC,AD=DC=PA=2,BC=4,E为PA的中点,M为棱BC上一点.
(Ⅰ)当BM为何值时,有EM∥平面PCD;
(Ⅱ)在(Ⅰ)的条件下,求点P到平面DEM的距离.

分析 (Ⅰ)取PD中点F,连接EF,CF,推导出四边形EMCF为平行四边形,从而EM∥FC,由此推导出当BM=3时,EM∥平面PCD.
(Ⅱ)设点P到平面DEM的距离为d,由VA-DEM=VE-AMD,能求出点P到平面DEM的距离.

解答 解:(Ⅰ)当BM=3时,有EM∥平面PCD.
取PD中点F,连接EF,CF,
∵E,F分别为PA,PD的中点,
∴EF∥AD,且$EF=\frac{1}{2}AD=1$.
又∵梯形ABCD中,CM∥AD,且CM=1,
∴EF∥CM,且EF=CM,
∴四边形EMCF为平行四边形,
∴EM∥FC,
又∵EM?平面PCD,FC?平面PCD,∴EM∥平面PCD,
即当BM=3时,EM∥平面PCD.
(Ⅱ)∵E为PA的中点,
∴点P到平面DEM的距离等于点A到平面DEM的距离,设点P到平面DEM的距离为d,
由已知可得,$AM=MD=ED=\sqrt{5}$,$EM=\sqrt{6}$,
∴S△AMD=2,${S_{△DEM}}=\frac{{\sqrt{21}}}{2}$,
由VA-DEM=VE-AMD,得$\frac{1}{3}{S_{△DEM}}•d=\frac{1}{3}{S_{△AMD}}•EA$,
∴$d=\frac{{{S_{△AMD}}•EA}}{{{S_{△DEM}}}}=\frac{{4\sqrt{21}}}{21}$,
所以点P到平面DEM的距离为$\frac{{4\sqrt{21}}}{21}$.

点评 本题考查满足线面平行的点的位置的确定与证明,考查点到平面的距离的求法,考查推理论证能力、运算求解能力、空间思维能力,考查化归转化思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在斜三棱柱ABC-A1B1C1中,AB=AC,平面BB1C1C⊥底面ABC,点M、D分别是线段AA1、BC的中点.
(1)求证:AD⊥CC1
(2)求证:AD∥平面MBC1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设点F为抛物线y2=4x的焦点,A,B是抛物线上两点,线段AB的中垂线交x轴于点D(5,0),则|AF|+|BF|=(  )
A.5B.6C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图1,2,E是正方形ABCD的AB边的中点,将△AED与△BEC分别沿ED、EC折起,使得点A与点B重合,记为点P,得到三棱锥P-CDE.
(Ⅰ)求证:平面PED⊥平面PCD;
(Ⅱ)求二面角P-CE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知平面α∩平面β=a,平面β∩平面γ=b,平面γ∩平面α=c,则下列命题:
①若a∥b,则a∥c,b∥c;
②若a∩b=O,则O∈c;
③若a⊥b,b⊥c,则a⊥c.
其中正确的命题是(  )
A.①②③B.②③C.①③D.①②

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.数列{an}的前n项和为Sn,Sn=(2n-1)an,且a1=1.
(1)求数列{an}的通项公式;
(2)若bn=nan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知关于x的方程x3+ax2+bx+c=0的三个实根分别为一个椭圆,一个抛物线,一个双曲线的离心率,则$\frac{b}{a}$的取值范围(  )
A.(-1,0)B.$(-1,-\frac{1}{2})$C.$(-2,-\frac{1}{2})$D.(-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知α,β为锐角,且$tanα=\frac{1}{7}$,$cos({α+β})=\frac{{2\sqrt{5}}}{5}$,则cos2β=(  )
A.$\frac{3}{5}$B.$\frac{2}{3}$C.$\frac{4}{5}$D.$\frac{{7\sqrt{2}}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.记不等式$\left\{\begin{array}{l}x-y+1≥0\\ 3x-y-3≤0\\ x+y-1≥0\end{array}\right.$所表示的平面区域为D,若对任意(x0,y0)∈D,不等式x0-2y0+c≤0恒成立,则c的取值范围是(  )
A.(-∞,4]B.(-∞,2]C.[-1,4]D.(-∞,-1]

查看答案和解析>>

同步练习册答案