分析 根据题意可知,大老鼠和小老鼠打洞的距离为等比数列,根据等比数列的前n项和公式,求得Sn.
解答 解:由题意可知:大老鼠每天打洞的距离是以1为首项,以2为公比的等比数列,
前n天打洞之和为$\frac{1-{2}^{n}}{1-2}$=2n-1,
同理,小老鼠每天打洞的距离$\frac{1-(\frac{1}{2})^{n}}{1-\frac{1}{2}}$=2-$\frac{1}{{2}^{n-1}}$,
∴Sn=2n-1+2-$\frac{1}{{2}^{n-1}}$=${2}^{n}-\frac{1}{{2}^{n-1}}+1$,
故答案为:=${2}^{n}-\frac{1}{{2}^{n-1}}+1$.
点评 本题考查求等比数列的前n项和公式,要认真审题,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | ${C}_{n}^{m}$=${C}_{n}^{n-m}$ | B. | ${C}_{m}^{m}$+${C}_{m}^{m-1}$=${C}_{m+1}^{m}$ | ||
| C. | ${C}_{5}^{1}$+${C}_{5}^{2}$=${C}_{5}^{3}$ | D. | ${C}_{n+1}^{m}$=${C}_{n}^{m-1}$+${C}_{n-1}^{m}$+${C}_{n-1}^{m-1}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | cosθ-sinθ | B. | sinθ-cosθ | C. | $\sqrt{2}$sinθ | D. | $\sqrt{2}$cosθ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4个 | B. | 2个 | C. | 3个 | D. | 1个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com