精英家教网 > 高中数学 > 题目详情
4.《九章算术》中的“两鼠穿墙题”是我国数学的古典名题:“今有垣厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何?”题意是:“有两只老鼠从墙的两边打洞穿墙,大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半.”如果墙足够厚,Sn为前n天两只老鼠打洞长度之和,则Sn=${2}^{n}-\frac{1}{{2}^{n-1}}+1$尺.

分析 根据题意可知,大老鼠和小老鼠打洞的距离为等比数列,根据等比数列的前n项和公式,求得Sn

解答 解:由题意可知:大老鼠每天打洞的距离是以1为首项,以2为公比的等比数列,
前n天打洞之和为$\frac{1-{2}^{n}}{1-2}$=2n-1,
同理,小老鼠每天打洞的距离$\frac{1-(\frac{1}{2})^{n}}{1-\frac{1}{2}}$=2-$\frac{1}{{2}^{n-1}}$,
∴Sn=2n-1+2-$\frac{1}{{2}^{n-1}}$=${2}^{n}-\frac{1}{{2}^{n-1}}+1$,
故答案为:=${2}^{n}-\frac{1}{{2}^{n-1}}+1$.

点评 本题考查求等比数列的前n项和公式,要认真审题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.执行如图所示的程序框图,输出的n为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知F为抛物线y2=8x的焦点,若该抛物线上一点M满足|MO|2=3|MF|(0为坐标原点),则|MF|=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设n,m∈N,n>m,则下列等式中不正确的是(  )
A.${C}_{n}^{m}$=${C}_{n}^{n-m}$B.${C}_{m}^{m}$+${C}_{m}^{m-1}$=${C}_{m+1}^{m}$
C.${C}_{5}^{1}$+${C}_{5}^{2}$=${C}_{5}^{3}$D.${C}_{n+1}^{m}$=${C}_{n}^{m-1}$+${C}_{n-1}^{m}$+${C}_{n-1}^{m-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某人上午7时乘摩托艇以匀速v n mile/h(4 n mile/h≤t≤20 n mile/h)从A港出发到距50 n mile的B港,然后乘汽车以匀速ω km/h(30 km/h≤ω≤100 km/h)自B港向距300km的C市驶去,应该在同一天下午4点至9点到达C市.设汽车、摩托艇所需的时间分别是x h和y h,所需要的经费P=100+3•(5-x)+2•(8-y)元,求v、ω分别是多少时走的最经济?此时需要花费多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若$\frac{π}{4}$<θ<$\frac{θ}{2}$,则$\sqrt{1-sin2θ}$的值为(  )
A.cosθ-sinθB.sinθ-cosθC.$\sqrt{2}$sinθD.$\sqrt{2}$cosθ

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}满足an+1=2+an(n∈N*),且a1=1.
(1)求数列{an}的通项公式及{an}的前n项和Sn
(2)设bn=${2}^{{a}_{n}}$,求数列{bn}的前n项和Tn
(3)证明:$\frac{{T}_{n}{T}_{n+2}}{{T}_{n+1}^{2}}$<1(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.给出下列等式:
①cos80°cos20°+sin80°sin20°=$\frac{1}{2}$;
②sin13°cos17°-cos13°sin17°=$\frac{1}{2}$;
③cos70°cos25°+cos65°cos20°=$\frac{\sqrt{2}}{2}$;
④sin140°cos20°+sin50°sin20°=$\frac{\sqrt{3}}{2}$.
其中成立的(  )
A.4个B.2个C.3个D.1个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.正项数列{an}前n项和为Sn,且$a_n^2=4{S_n}-2{a_n}-1$(n∈N+
(1)求数列{an}的通项公式;
(2)若${b_n}=\frac{{4{{(-1)}^{n+1}}{a_{n+1}}}}{{({a_n}+1)({a_{n+1}}+1)}}$,数列{bn}的前n项和为Tn,证明:T2n-1>1>T2n(n∈N+).

查看答案和解析>>

同步练习册答案